
Table of Contents

Foreword 0

Part I TWinHTTP 4

Part II Installation Instructions 5

Part III Registration Information 7

Part IV License Agreement 8

Part V Properties 10

... 101 AcceptTypes

... 112 AddHeaders

... 113 Agent

... 124 Busy

... 125 CacheOptions

... 136 FileName

... 137 HostName

... 148 InternetOptions

... 159 OutputFileAttributes

... 1610 OutputFileName

... 1711 Password

... 1712 POSTData

... 1813 Proxy

.. 18AccessType

.. 19ProxyBypass

.. 19ProxyPassword

.. 20ProxyPort

.. 20ProxyServer

.. 20ProxyUsername

... 2114 Range

.. 21EndRange

.. 21StartRange

... 2215 Referer

... 2216 RequestMethod

... 2317 ShowGoOnlineMessage

... 2418 Suspended

... 2419 Timeouts

.. 25ConnectTimeout

.. 25ReceiveTimeout

.. 25SendTimeout

IContents

I

© 1999-2002, UtilMind Solutions®

... 2620 Thread

... 2621 ThreadPriority

... 2722 TransferBufferSize

... 2723 URL

... 2724 Username

... 2825 WaitThread

... 2826 WaitTimeout

... 2927 WorkOffline

Part VI Methods 29

... 291 Abort

... 302 IsGlobalOffline

... 303 Pause

... 314 Read

... 325 ReadRange

... 326 Resume

... 337 Upload

... 348 UploadByFieldNames

Part VII Events 35

... 351 OnAborted

... 352 OnAnyError

... 353 OnBeforeSendRequest

... 364 OnConnLost

... 365 OnDone

... 386 OnDoneInterrupted

... 387 OnHeaderInfo

... 408 OnHostUnreachable

... 409 OnHTTPError

... 4210 OnOutputFileError

... 4311 OnPasswordRequest

... 4412 OnProgress

... 4613 OnProxyAuthenticationRequest

... 4614 OnRedirected

... 4715 OnUploadCGITimeoutFailed

... 4716 OnUploadFieldRequest

... 5017 OnUploadProgress

... 5218 OnWaitTimeoutExpired

Part VIII Appendix: HTTP status codes 53

WinHTTP componentII

© 1999-2002, UtilMind Solutions®

Part IX HTTPReadString 55

Index 57

IIIContents

III

© 1999-2002, UtilMind Solutions®

WinHTTP component4

© 1999-2002, UtilMind Solutions®

1 TWinHTTP

Overview
The WinHTTP component is extremely easy to use WinInet-based HTTP client component which
allows to post and get any data from the Web via HTTP protocol. With WinHTTP you can grab Web
pages, download files and documents (or only their headers without the content), get results of the
CGI programs (for example, results of web-based search engines / databases), or even upload files
to the Web-based programs.

The WinHTTP can grab web contents both in binary and text formats, supports cache of Internet
Explorer, can pause and resume broken downloads, read data from password protected directories
and automatically supports several proxy authentication schemes (basic, digest, NTLM etc).

 Key features

· works with both, HTTP and HTTPS protocols + can read files from local area network using "file://"
prefix for URLs;

· can either POST or GET data to remote CGI programs;

· can upload files by HTTP protocol, using multipart/form-data POST method, introduced in
RFC 1867;

· can download or upload data to password protected Web directories;

· flexible cache control, provided by WinINet library. The WinHTTP just use standard cache of
Internet Explorer to retreive or write downloaded files to cache and save bandwidth from re-
downloading. The cache control can be is easily customized by various options;

· can pause and resume broken downloads;

· automatically accepts SSL certificates, can allow or disallow access to sites with invalid or expired
certificates;

· can automatically retreive proxy information from Internet Options of Control Panel, make HTTP
requests with custom proxy settins or directly without any proxy server;

· automatically supports several secure proxy authentication schemes: basic, digest, NTLM (NT
Lan Manager), MSN (Microsoft Network), DPA (Distributed Password Authentication) and RPA
(Remote Passphrase Authentication by CompuServe)

· using super stable threading mechanism, which allows to execute HTTP requests from both,
standard, and ActiveX forms.

How to use ?
Just specify the location of Internet document which you would like to receive to URL property, and
call Read method to start downloading. Use OnDone event to handle received data, or use
OnHTTPError, OnConnLost and OnHostUnreachable events to handle errors. To show the
download progress, write OnProgress event handler.

If you need to send some data to the CGI program via POST method, specify the request in the
POSTData property before Reading. Usually WinHTTP component can automatically recognize
which request method you would like to use, POST or GET, however if you wish you can specify it in
the RequestMethod property.

If you want to just check the HTTP headers of remote document without downloading it (or before
downloading) — write the OnHeaderInfo event handler to receive all the headers (document size,
content type, language, encoding, last modification and expiration date and so forth). You can also
use this event to check the file information and decide whether you really want to download it…

To read files from password protected Web directories you should specify login information in
Username and Password properties. Also use OnPasswordRequest event to specify login
information dynamically.

http://www.faqs.org/rfcs/rfc821.html

TWinHTTP 5

© 1999-2002, UtilMind Solutions®

 WinHTTP can upload files via HTTP protocol, using multipart/form-data POST method,
introduced in RFC 1867. Uploading still easy to use as well as downloading. For more details see
Upload method and OnUploadFieldRequest, OnUploadProgress events.

 WinHTTP automatically recognize and supports several Proxy authentication schemes (basic,
digest, NTLM (NT Lan Manager), MSN (Microsoft Network), DPA (Distributed Password
Authentication) and RPA (Remote Passphrase Authentication by CompuServe)). If user works
through secure proxy server which requires user authentication — specify ProxyUsername and
ProxyPassword properties to the Proxy structure, or write OnProxyAuthenticationRequest event
handler to prompt users for the username and password required to access the Web via proxy
server.

If you need to terminate downloading process imediately — call Abort method. In case if you
downloading some binary data to file (specified in OutputFileName property), you can resume the
downloading at any time using Resume method.

 The WinHTTP automatically uses simple but smart scheme of checking whether the file which
you're trying to Resume has been updated or modified. Before downloading of the data which
should be appended, it downloads small data chunk (with size specified in TransferBufferSize
property), before the break, and compares with the same data chunk at the end of file.

In case if compared data are equal — it continue downloading and append downloaded data to the
end of local file. Otherwise it assume that file which beging downloaded has been changed, and
starts download from beginning.

By default TransferBufferSize = 4Kb, so every time when you call Resume method, the component
download 4Kb of extra "rollback" data to check file consistancy.

 Also, the WinHTTP unit provides another, extremally simpe way to receive some text information
from the Web, using HTTPReadString function, without any WinHTTP component on the form and
without specifying its properties and handling the events. The HTTPReadString can be used to
download some text string or HTML document from specified location.

Usage example
Compiled executable: http://www.appcontrols.com/demos/exe/HTTPDemo.exe

Important note!

 C++ Builder programmers: Don't forget to add "INET.LIB" file ("WININET.LIB" for BCB6 and
higher, this file can be found in "..\CBuilderX\Lib" directory) to your project which uses the
WinHTTP. The INET.LIB contains references to required Internet routines from WinInet.DLL.

2 Installation Instructions

Package without source code
to Delphi 2
 1. Create "..\Lib\WinHTTP" directory.
 2. Unzip files and copy them to "..\Lib\WinHTTP".
 3. Start Delphi 2 IDE.
 4. Select "Component \ Install..." menu item.
 5. Press "Add" button and select "_WinHTTPReg.pas" file.
 6. Rebuild library.

to Delphi 3
 1. Create "..\Lib\WinHTTP" directory.

http://www.faqs.org/rfcs/rfc821.html
http://www.appcontrols.com/demos/exe/HTTPDemo.exe

WinHTTP component6

© 1999-2002, UtilMind Solutions®

 2. Unzip files and copy them to "..\Lib\WinHTTP".
 3. Start Delphi 3 IDE.
 4. Open "WinHTTPD3.dpk" file.
 5. Install package to the components palette ("Install" button).

to Delphi 4
 1. Create "..\Lib\WinHTTP" directory.
 2. Unzip files and copy them to "..\Lib\WinHTTP".
 3. Start Delphi 4 IDE.
 4. Open "WinHTTPD4.dpk" file.
 5. Install package to the components palette ("Install" button).

to Delphi 5
 1. Create "..\Lib\WinHTTP" directory.
 2. Unzip files and copy them to "..\Lib\WinHTTP".
 3. Start Delphi 5 IDE.
 4. Open "WinHTTPD5.dpk" file.
 5. Install package to the components palette ("Install" button).

to Delphi 6
 1. Create "..\Lib\WinHTTP" directory.
 2. Unzip files and copy them to "..\Lib\WinHTTP".
 3. Start Delphi 6 IDE.
 4. Open "WinHTTPD6.dpk" file.
 5. Install package to the components palette ("Install" button).

to Delphi 7
 1. Create "..\Lib\WinHTTP" directory.
 2. Unzip files and copy them to "..\Lib\WinHTTP".
 3. Start Delphi 7 IDE.
 4. Open "WinHTTPD7.dpk" file.
 5. Install package to the components palette ("Install" button).

to Delphi 2005
 1. Create "..\Lib\WinHTTP" directory.
 2. Unzip files and copy them to "..\Lib\WinHTTP".
 3. Start Delphi 2005 IDE.
 4. Open "WinHTTPD2005.dpk" file.
 5. Install package to the components palette (right-click on "AppControlsD2005.bpl" node in the
Project Manager and select "Install" menu item).

to C++ Builder 3
 1. Create "..\Lib\WinHTTP" directory.
 2. Unzip files and copy them to "..\Lib\WinHTTP".
 3. Start C++ Builder 3 IDE.
 4. Open "WinHTTPCB3.bpk" file.
 5. Select "Project \ Make WinHTTPCB3" menu item.
 6. Select "Component \ InstallPackages" menu item.
 7. Press "Add" button and select "WinHTTPCB3.bpl" file.

to C++ Builder 4
 1. Create "..\Lib\WinHTTP" directory.
 2. Unzip files and copy them to "..\Lib\WinHTTP".
 3. Start C++ Builder 4 IDE.
 4. Open "WinHTTPCB4.bpk" file.

Installation Instructions 7

© 1999-2002, UtilMind Solutions®

 5. Install package to the components palette ("Install" button).

to C++ Builder 5
 1. Create "..\Lib\WinHTTP" directory.
 2. Unzip files and copy them to "..\Lib\WinHTTP".
 3. Start C++ Builder 5 IDE.
 4. Open "WinHTTPCB5.bpk" file.
 5. Install package to the components palette ("Install" button).

to C++ Builder 6
 1. Create "..\Lib\WinHTTP" directory.
 2. Unzip files and copy them to "..\Lib\WinHTTP".
 3. Start C++ Builder 6 IDE.
 4. Open "WinHTTPCB6.bpk" file.
 5. Install package to the components palette ("Install" button).

Source Code
 1. Uninstall / delete all previous (trial) instances of WinHTTP.
 2. Create "..\Lib\WinHTTP" directory.
 3. Unzip files from "Sources" directory and copy them to "..\Lib\WinHTTP".
 4. Run Delphi IDE.
 5. Select "Component \ Install..." menu item.
 6. Press "Add" button and select "_WinHTTPReg.pas" file.
 7. Rebuild library.

Note for C++ Builder developers

 When you are using the Internet components (i.e: WinHTTP), please don't forget to add
INET.LIB to your project (it can be found at "CBuilder\Lib" directory). This file contains the
references to routines from WinInet.dll. So if you got linker error such like following:
 [Linker Error] Unresolved external 'InternetCrackUrlA' referenced from
C:\PROGRAM FILES\BORLAND\CBUILDER5\PROJECTS\LIB\WINHTTPCB5.LIB
please don't worry and be aware that InternetCrackUrlA are used to parse the URL (split URL to
domain name, port, document name etc). To solve
this problem, just add INET.LIB to your project (use "Project | Add to project" menu item in C++
Builder IDE).

WinHTTP (http://www.appcontrols.com)
Copyright © 1998-2005, UtilMind Solutions. All Rights Reserved.
Documentation created with Help&Manual, best authoring tool.

3 Registration Information

WinHTTP is SHAREWARE. This means that you can try it out for free, but if you like it and want to
use it you have to register it with the author. Before continue read and accept license agreement
please.

The only difference between the unregistered and registered versions is that the registered one has
not message box with remind to register and works without Delphi (C++ Builder) running. You can
also purchase the source code, if you would like to have it, and be able to compile or modify the
WinHTTP on any 32bit version of Delphi or C++ Builder.

http://www.appcontrols.com
http://www.utilmind.com
http://www.ec-software.com

WinHTTP component8

© 1999-2002, UtilMind Solutions®

If you would like to use the WinHTTP and receive full, unrestricted version, priority support or even
source code — you have to purchase proper license.

All prices are in European currency (Euros). Registering entitles you to unlimited support via E-Mail,
minor version updates indefinitely and major version updates for 6 month from date of purchase. You
can use registered components in any number of projects, there is no deployment and royaltee fees.

Registration types:

Full, unrestricted version without source code:
Single user license:
· https://secure.element5.com/register.html?productid=177196 - EUR 17,95
Site license:

· https://secure.element5.com/register.html?productid=177202 - EUR 59,95

Full version including 100% Source Code:
Single user license:

· https://secure.element5.com/register.html?productid=177199 - EUR 27,95
Site license:

· https://secure.element5.com/register.html?productid=177204 - EUR 89,95

Comments
1. Site license covers a single organisation in one location (building complex). If you buy a site

license, you may use the software in unlimited number of your company's computers withing this
area. Site license is very cost-effective if you have many computers (many software developers).

See license agreement for more details.

WinHTTP (http://www.appcontrols.com)
Copyright © 1998-2005, UtilMind Solutions. All Rights Reserved.
Documentation created with Help&Manual, best authoring tool.

4 License Agreement

Copyright
The WinHTTP (software) is Copyright © 1999-2005, by Utilmind Solutions® (Utilmind). All rights
reserved.
The authors - Utilmind Solutions® and Aleksey Kuznetsov (founder of Utilmind), exclusively own all
copyrights to the Advanced Application Controls (AppControls) and all other products distributed by
Utilmind Solutions®.

Liability disclaimer
THIS SOFTWARE IS DISTRIBUTED "AS IS" AND WITHOUT WARRANTIES AS TO
PERFORMANCE OF MERCHANTABILITY OR ANY OTHER WARRANTIES WHETHER
EXPRESSED OR IMPLIED. YOU USE IT AT YOUR OWN RISK. THE AUTHOR WILL NOT BE
LIABLE FOR DATA LOSS, DAMAGES, LOSS OF PROFITS OR ANY OTHER KIND OF LOSS
WHILE USING OR MISUSING THIS SOFTWARE.

Restrictions
You may not attempt to reverse compile, modify, translate or disassemble the software in whole or in

http://www.appcontrols.com
http://www.utilmind.com
http://www.ec-software.com

License Agreement 9

© 1999-2002, UtilMind Solutions®

part. You may not remove or modify any copyright notice or the method by which it may be invoked.

Operating license
Unregistered version
You may distribute the unregistered version of software freely, provided that all files are included and
remain unmodified and that no extra files have been added to the package. You may not ask any
money for the distribution. You may use the unregistered version of software free of charge for
testing purposes, but if you want to use it for other purposes than testing - you have to register it
with the author.

Registered version (single user license)
Once you have registered, you will receive a personal registered copy via email and login
information to access your personal area at AppControls.com. This copy may not be copied or lend.
You have the non-exclusive right to use registered version of the software only by a single person,
on a single computer at a time. You may physically transfer the software from one computer to
another, provided that the software is used only by a single person, on a single computer at a time.
In group projects where multiple persons will use the software, you must purchase an individual
license for each member of the group or purchase site license. Use over a "local area network"
(within the same locale) is permitted provided that the software is used only by a single person, on a
single computer at a time. Use over a "wide area network" (outside the same locale) is strictly
prohibited under any and all circumstances.

Registered version (site/team license)
Once you have registered, you will receive a personal registered copy via email and login
information to access your personal area at AppControls.com. This copy may not be copied or lend.
You have the non-exclusive right to use and transfer registered version of software on any number
of computers by your company or your team only in one location (building complex). If you purchase
a site license, you may use the program in an unlimited number of your company's computers
within this area.

Registered version (Educational site license)
Once you have registered, you will receive a personal registered copy via email and login
information to access your personal area at AppControls.com. This copy may not be copied or lend.
You have the non-exclusive right to use and transfer registered version of software on any number
of computers by your educational organisation (school/college/university etc) in one location
(building complex). If you buy a educational site license, you may use the program in an unlimited
number of your edicational organisation's computers within this area.

Registered version (World-wide license)
Once you have registered, you will receive a personal registered copy via email and login
information to access your personal area at AppControls.com. This copy may not be copied or lend.
You have the non-exclusive right to use and transfer registered version of software on any number
of computers by your company or your team world-wide. If your company has many branches even
with thouthands of computers, world wide license covers them all.

Notes (clarification)
"Single-user license" means "single-developer license". "Site license" means that it can be used by
any number of software developers within your company.
You can use purchased components in ANY number of your projects and deploy the "end-user"
software to ANY number of your users/customers without any additional royalty fees. However you
are not permitted to distribute the component itself (the source code or .dcu files of components).

Back-up and transfer

WinHTTP component10

© 1999-2002, UtilMind Solutions®

You may make one copy of the software solely for "back-up" purposes, as prescribed by
international copyright laws. You must reproduce and include the copyright notice on the back-up
copy.

Terms
This license is effective until terminated. You may terminate it by destroying the program, the
documentation and copies thereof. This license will also terminate if you fail to comply with any
terms or conditions of this agreement. You agree upon such termination to destroy all copies of the
program and of the documentation, or return them to author.

Other rights and restrictions
All other rights and restrictions not specifically granted in this license are reserved by authors.

WinHTTP (http://www.appcontrols.com)
Copyright © 1998-2005, UtilMind Solutions. All Rights Reserved.
Documentation created with Help&Manual, best authoring tool.

5 Properties

5.1 AcceptTypes

Applies to
WinHTTP component.

Declaration
property AcceptTypes: String; // default is "*/*"

Description
The AcceptTypes property specifies the array of media types (also known as Multipurpose Internet
Mail Extension (MIME) type) which you would like to receive from the Web using the WinHTTP
component (HTTP client). These strings indicates content types accepted by the client. If
AcceptTypes is empty, no types are accepted by the client.

 For example, if you would like to get HTML files only, set AcceptTypes property to "text/html". To
receive flat-text files only, set AccessTypes to "text/plain".

Servers interpret a lack of accept types to indicate that the client accepts only documents of type
"text/*" (that is, only text documents, and not pictures or other binary files.

To specify multiple MIME types, sepearate them by comma sign "," (ie: "image/gif, image/x-xbitmap,
image/jpeg, image/pjpeg, application/vnd.ms-excel, application/msword, */*").

 Some servers always checking the media types accepted by client to determinate the data format
prefered by client. For example, lately some servers can returns human readable data both in HTML
and WML formats. HTML used for output to standard Web-browsers and WML for output to celluar
phones, handheld computers and other WAP devices. To determinate the client type, server uses
the HTTP_ACCEPT environment of client:
if ($ENV{'HTTP_ACCEPT'} =~ /wml/) {
 print "Location: http://website.com/wap/index.wml\n\n";
}else {
 print "Location: http://website.com/index.html\n\n";

When server founds "WML" word between the accepted types, it will redirect the client to certain

http://www.appcontrols.com
http://www.utilmind.com
http://www.ec-software.com

Properties 11

© 1999-2002, UtilMind Solutions®

WAP page. As you can see, sometimes the HTTP output depend on accepted media types.

For more details on Accept header please see the reference at
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.1

Remark

 Some servers does not check accepting types at all and can return files with ANY media type.

See also
AddHeaders, Agent, URL and Referer properties.

5.2 AddHeaders

Applies to
WinHTTP component.

Declaration
property AddHeaders: TStringList;

Description
The AddHeaders property specifies any additional HTTP headers that should pass to the server.
You can specify ANY optional headers that may be required by server to process request.

For example, if server can return preferable content taking in account the language that user can
read:
AddHeadeers.Clear;
{ Assume that user user can read Russian, English, German and French
content (sorted by priority). }
AddHeaders.Add('ACCEPT_LANGUAGE: ru,en,de,fr');

 List of widely used HTTP headers (* sample values marked red):
ACCEPT_CHARSET: iso-8859-1,*,utf-8
ACCEPT_ENCODING: gzip, deflate
ACCEPT_LANGUAGE: en-us,es
CONNECTION: Keep-Alive
FROM: someone@somewhere.com
IF_MODIFIED_SINCE: Tue, 06 Feb 2001 18:30:50 GMT
RANGE: bytes=0-255

…see also quick reference to HTTP headers at http://www.cs.tut.fi/~jkorpela/http.html, or full
reference at http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

 If you would like to test the HTTP headers specified in your HTTP client on real server, you can
read content from following URL:http://www.appcontrols.com/cgi/test/http_headers.cgi

See also
AcceptTypes, Agent properties.

5.3 Agent

Applies to
WinHTTP component.

Declaration
property Agent: String;

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.1
http://www.cs.tut.fi/~jkorpela/http.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
http://www.appcontrols.com/cgi/test/http_headers.cgi

WinHTTP component12

© 1999-2002, UtilMind Solutions®

Description
The Agent property specifies the name of HTTP client.

 The "user agent" can be name of your program or program version. For example, user agent of
MS Internet Explorer 5.01 which installed to Windows 98 is Mozilla/4.0 (compatible; MSIE
5.01; Windows 98).

See also
AcceptTypes and AddHeaders properties.

5.4 Busy

Applies to
WinHTTP component.

Declaration
property Busy: Boolean; // Read-only !!

Description
The Busy property determines whether the HTTP component (its thread) are busy when its execute
some operations. When Busy property is True, the WinHTTP currently requesting/downloading data
from the Web, or processing OnDone event handler.

Note

 You can NOT download any data when the HTTP is busy, and must wait until component done
all operations. The Read method will return False when the component is busy.

See also
Read method; OnDone and OnAnyError events.

5.5 CacheOptions

Applies to
WinHTTP component.

Declaration
type
 TWinCacheOption = (coAlwaysReload, coReloadIfNoExpireInformation,
 coReloadUpdatedObjects, coPragmaNoCache,
 coNoCacheWrite, coCreateTempFilesIfCantCache,
 coUseCacheIfNetFail);
 TWinCacheOptions = set of TWinCacheOption;

property CacheOptions: TWinCacheOptions;

Description
The CacheOptions property controls the cache options for the WinHTTP component and
determines how the component should use standard Internet Explorer's cache.

The cache control has following options:
Value Meaning

 coAlwaysReload Forces a download of the requested file, object, or directory listing

from the origin server, not from the cache.;

 coReloadIfNoExpireInformation Forces a reload if there was no Expires time and no LastModified

Properties 13

© 1999-2002, UtilMind Solutions®

time returned from the server when determining whether to reload
the item from the network.;

 coReloadUpdatedObjects Reloads HTTP resources if the resource has been modified since

the last time it was downloaded;

 coPragmaNoCache Forces the request to be resolved by the origin server, even if a

cached copy exists on the proxy;

 coNoCacheWrite Does not add the downloaded entity to the cache;

 coCreateTempFilesIfCantCache Causes a temporary file to be created if the file cannot be cached.

 Note: since secure pages won't be cached, this option is
always False when downloading document by HTTPS protocol;;

 coUseCacheIfNetFail Returns the resource from the cache if the network request for
the resource fails due if connection with the server has been
reset, or the attempt to connect to the server failed.

See also
InternetOptions property;
Read method; OnHeaderInfo event.

5.6 FileName

Applies to
WinHTTP component.

Declaration
property FileName: Boolean; // Read-only !!

Description
The FileName is optional and read-only property used to exctract the file name from the HTTP
address specified in the URL property.

 If you would like to specify the target file for downloaded data — use OutputFileName property.

Example
WinHTTP1.URL := 'http://www.abc.com/download/filename.zip';
Result := WinHTTP1.FileName;
// Result will be 'filename.zip';

See also
URL, HostName and OutputFileName properties.

5.7 HostName

Applies to
WinHTTP component.

Declaration
property HostName: Boolean; // Read-only !!

Description
The HostName is optional and read-only property used to exctract the host name from the HTTP
address specified in the URL property.

Example

WinHTTP component14

© 1999-2002, UtilMind Solutions®

WinHTTP1.URL := 'http://www.abc.com/download/filename.zip';
Result := WinHTTP1.HostName;
// Result will be 'www.abc.com';

See also
URL and FileName properties.

5.8 InternetOptions

Applies to
WinHTTP component.

Declaration
type
 TWinInternetOption = (ioIgnoreCertificateInvalid,
ioIgnoreCertificateDateInvalid,
 ioIgnoreUnknownCertificateAuthority,
 ioIgnoreRedirectToHTTP, ioIgnoreRedirectToHTTPS,
 ioKeepConnection, ioNoAuthentication,
 ioNoAutoRedirect, ioNoCookies);
 TWinInternetOptions := set of TWinInternetOption;

property InternetOptions: TWinInternetOptions;

Description
The InternetOptions property is the set of options used to specify some behaviors of WinHTTP
component.

The property is set of following options:
Value Meaning

 ioIgnoreCertificateInvalid Disables checking of SSL/PCT-based certificates that are
returned from the server against the host name given in the
request. WinINet functions use a simple check against
certificates by comparing for matching host names and simple
wildcarding rules;

 ioIgnoreCertificateDateInvalid Disables checking of SSL/PCT-based certificates for proper

validity dates;

 ioIgnoreUnknownCertificateAuthoritySpecifies whether the component should ignore unknown

certificate authority problems, if the server's SSL certificate has
been "signed", but by unknown or untrusted authority;

 ioIgnoreRedirectToHTTP Disables detection of this special type of redirect. When this

flag is used, WinINet functions transparently allow redirects
from HTTPS to HTTP URLs;

 ioIgnoreRedirectToHTTPS Disables detection of this special type of redirect. When this

flag is used, WinINet functions transparently allow redirects
from HTTP to HTTPS URLs;

 ioKeepConnection Uses keep-alive semantics, if available, for the connection.

This flag is required for Microsoft Network (MSN), NT LAN
Manager (NTLM), and other types of authentication;

 ioNoAuthentication Does not attempt authentication automatically;

 ioNoAutoRedirect Does not automatically handle redirection;

 ioNoCookies Does not automatically add cookie headers to requests, and

Properties 15

© 1999-2002, UtilMind Solutions®

does not automatically add returned cookies to the cookie
database.

See also
CacheOptions property;
Read method;
OnHeaderInfo, OnRedirected and OnProxyAuthenticationRequest events.

5.9 OutputFileAttributes

Applies to
WinHTTP component.

Declaration
type
 TWinHTTPFileAttribute = (atrArchive, atrHidden, atrReadOnly,
atrSystem, atrTemporary, atrOffline);
 TWinHTTPFileAttributes = set of TWinHTTPFileAttribute;

 TWinHTTPOutputFileAttributes = class
 published
 property Complete: TWinHTTPFileAttributes default [atrArchive];
 property Incomplete: TWinHTTPFileAttributes default [atrArchive,
atrTemporary];
 end;

property OutputFileAttributes: TWinHTTPOutputFileAttributes;

Description
The OutputFileAttributes property allows to specify the file attributes for file which being downloaded
to location specified in OutputFileName property.

There is 2 "sub-properties": Complete and Incomplete.

Incomplete property specifies flags for incomplete file which still being downloaded (or paused,
but still not downloaded to local drive completely).

Complete specifies attributes which being set to the OutputFileName once the download finished
and file completely downloaded.

 You can use this property to make difference between complete and incomplete files for other
application, or to quickly determinate whether local file has been completely downloaded.

Also, anyway you will be able to rename the downloaded file and change its file attributes (using
SetFileAttributes WinAPI), in the OnDone event handler.

Note

 atrTemporary and atrOffline options has no effect in Win95/98/ME. These options are
only for NT-family systems. You can set it but they will work only in NT/XP etc.

Example
WinHTTP1.URL := 'http://www.domain.com/filename.zip';
WinHTTP1.OutputFileName := 'c:\filename.zip';
WinHTTP1.OutputFileAttributes.Complete := [atrArchive]; // Normal
WinHTTP1.OutputFileAttributes.Incomplete := [atrArchive, atrHidden]; //
"hide" incomplete file

WinHTTP component16

© 1999-2002, UtilMind Solutions®

WinHTTP1.Read;

// and when file will be successfully downloaded you can
// change the file attributes to Normal in the OnDone event handler
procedure TForm1.WinHTTP1Done(Sender: TObject; const ContentType:
string;
 FileSize: Integer; Stream: TStream);
begin
 // set file attributes to normal
 Windows.SetFileAttributes(PChar(FileSize), FILE_ATTRIBUTE_NORMAL);
end;

See also
OutputFileName property;
Read, ReadRange, Resume and Pause methods;
OnOutputFileError and OnDone events.

5.10 OutputFileName

Applies to
WinHTTP component.

Declaration
property OutputFileName: String;

Description
The OutputFileName property specifies the target filename for downloaded resource. If the
OutputFileName specified, the WinHTTP uses the TFileStream instead of TMemoryStream as the
storage for downloaded data.

 Use the OutputFileName to specify the target filename if you need save data to the file AND if you
don't want to use memory-stream of OnDone event.

If you would like to hide the temporary (incomplete) file while it downloading — set
OutputFileAttributes.Incomplete property to [atrHidden].

In case if the OutputFileName can not be created (e.g. path not exists, or file locked by system etc)
— OnOutputFileError event occur.

Note

 The downloaded document will not be stored to the "OutputFileName", in case if component
received erroneous status response code (not 200 - OK and not 206 - Partial Content (if request
was initiated by Resume or ReadRange methods)).

In case of HTTP error, the downloaded content will be represented as TMemoryStream in various
events of WinHTTP.

Example
WinHTTP1.URL := 'http://www.domain.com/filename.zip';
WinHTTP1.OutputFileName := 'c:\filename.zip';
WinHTTP.Read;

See also
OutputFileAttributes property;
Read, ReadRange and Resume methods;
OnDone, OnHTTPError and OnOutputFileError events;

Properties 17

© 1999-2002, UtilMind Solutions®

HTTP Status Codes.

5.11 Password

Applies to
WinHTTP component.

Declaration
property Password: String;

Description
The Password property specifies the password to access the data in password protected Web
directories. You don't need to specify the password if you reading non-protected data.

 You can also specify the login information dynamically, when it necessary, in the
OnPasswordRequest event handler.

See also
Username property and OnPasswordRequest event.

5.12 POSTData

Applies to
WinHTTP component.

Declaration
property POSTData: String;

Description
The POSTData property specifies any optional data to send with the HTTP request. The optional
data can be the resource or information being posted to the server.

 The POSTData property is generally used to POST some data to the CGI programs. For
example, you would like to emulate submission of some online form. Set the POSTData accordingly
to the fields of HTML form. The format is following:
FieldName1=Value1&FieldName2=Value2&VieldNameN=ValueN

(Separate entries with "&" character.) Then just point the URL property to the CGI script (specified
as <form action=URL> tag in HTML format) and call Read method to submit the form.

Example: (requesting data from the CGI script (at Torry.net) via POST method)
procedure TForm1.ReadBtnClick(Sender: TObject);
begin
 WinHTTP1.URL := 'http://www.torry.net/quicksearch.php';
 WinHTTP1.POSTData := 'String=HTTP&Exact=Yes&Title=No';
 WinHTTP1.Read;
end;

procedure TForm1.WinHTTP1Done(Sender: TObject; ContentType: string;
FileSize: Integer; Stream: TStream);
begin
 // Receiving content from Stream
end;

 Remarks
1.When you trying to POST data to the CGI program specifying the POSTData property, make sure

WinHTTP component18

© 1999-2002, UtilMind Solutions®

that RequestMethod has set to rmAutoDetect or rmPOST;

2.The WinHTTP component unable to post data to the CGI program when user working offline

(even if user connected to the Internet). In this case, when you call the Read method, the
OnHostUnreachable event occurs. Posting to the CGI programs requires active Internet
connection.

See also
RequestMethod property and Read method.

5.13 Proxy

Applies to
WinHTTP component.

Declaration
type
 TWinHTTPProxy = class
 published
 property AccessType: TWinHTTPAccessType;
 property ProxyServer: String;
 property ProxyPort: Integer;
 property ProxyBypass: TStrings;
 end;

Description
The Proxy structure controls the connection type for the WinHTTP component and settings for
estabilishing connection via proxy. Connection type (AccessType) can be "pre-configured"
(WinHTTP will use settings from Control Panel), direct, or via specified proxy server.

If proxy requires authentication — write OnProxyAutenticationRequest event handler to prompt and
specify user's login information.

See also
OnProxyAuthenticationRequest event.

5.13.1 AccessType

Applies to
WinHTTP component as subproperty of Proxy structure.

Declaration
type
 TWinHTTPAccessType = (atPreconfig, atDirect, atProxy);

property AccessType: TWinHTTPAccessType;

Description
The AccessType property controls how the WinHTTP component should access the remote server
to download data. The AccessType can be direct or via the proxy server. If you'd like to use the
access type previously configured in the Control Panel — leave the AccessType = atPreconfig.

Values Meaning

 atPreconfig retrieves the proxy or direct configuration from the registry (user can configure the
access type in the Control Panel);

Properties 19

© 1999-2002, UtilMind Solutions®

 atDirect uses the direct connection and resolves all host names locally;

 atProxy access the remote data via the proxy server. Passes all requests to the proxy, unless

a proxy bypass list is not empty and the name to be resolved bypasses the proxy. To
specify the proxy server and port — use ProxyServer and ProxyPort properties. To
configure bypass list — use ProxyBypass property.

See also
ProxyServer, ProxyPort and ProxyBypass properties.

5.13.2 ProxyBypass

Applies to
WinHTTP component as subproperty of Proxy structure.

Declaration
property ProxyBypass: String;

Description
The ProxyBypass contains the list of host names or IP addresses, or both, that should not be routed
through the proxy. The list can contain wildcards. If the ProxyBypass is empty, the WinHTTP reads
the bypass list from the registry.

 You can use wild cards to match domain and host names or addresses — for example,
www.*.com;128.*;240.*;*.mygroup.*;*x* and so on. Use semicolon (;) to separate entries.

See also
ProxyServer and ProxyPort properties.

5.13.3 ProxyPassword

Applies to
WinHTTP component as subproperty of Proxy structure.

Declaration
property ProxyPassword: String;

Description
The ProxyPassword property specifies the password required for connection via proxy server, if it's
require secure authentication.

 Alternativaly you can write OnProxyAuthenticationRequest event handler and specify proxy
username and password dynamically.

Note

 If your proxy server uses some "challenge-response" authentication scheme — please make
sure that ioKeepConnection option of the InternetOptions is set to True. Otherwise, connection
with proxy could be dropped.

See also
ProxyUsername and InternetOptions properties;
OnProxyAuthenticationRequest event.

WinHTTP component20

© 1999-2002, UtilMind Solutions®

5.13.4 ProxyPort

Applies to
WinHTTP component as subproperty of Proxy structure.

Declaration
property ProxyPort: Integer;

Description
The ProxyPort property specifies the port number for the proxy server. The default value for proxy
ports is 8080.

See also
ProxyServer and ProxyBypass properties.

5.13.5 ProxyServer

Applies to
WinHTTP components as subproperty of Proxy structure.

Declaration
property ProxyServer: String;

Description
The ProxyServer property specifies the host name of the proxy server to use if the proxy access was
specified in the AccessType property.

See also
ProxyPort and ProxyBypass properties.

5.13.6 ProxyUsername

Applies to
WinHTTP component as subproperty of Proxy structure.

Declaration
property ProxyUsername: String;

Description
The ProxyUsername property specifies the username required for connection via proxy server, if it's
require secure authentication.

 Alternativaly you can write OnProxyAuthenticationRequest event handler and specify proxy
username and password dynamically.

Note

 If your proxy server uses some "challenge-response" authentication scheme — please make
sure that ioKeepConnection option of the InternetOptions is set to True. Otherwise, connection
with proxy could be dropped.

See also
ProxyPassword and InternetOptions properties;
OnProxyAuthenticationRequest event.

Properties 21

© 1999-2002, UtilMind Solutions®

5.14 Range

Applies to
WinHTTP component.

Declaration
type
 TWinHTTPRange = class(TPersistent)
 published
 property StartRange: Integer;
 property EndRange: Integer;
 end;

property Range: TWinHTTPRange;

Description
The Range structure specifies a range of binary data for partial download. Set content ranges if you
would like to download you would like to download just some defined part of the file.

For example, you would like to download the part of file, 40 bytes beginning from 50th byte. Then
just set StartRange to 50 and EndRange to 90.

Or, for another instance, you would like to resume broken download and read the file beginning from
1234 bytes till the end of file. Set StartRange to 1234 and EndRange to 0 (unlimited range).

Remark
The Range works for binary files only. For dynamic ASCII content (i.e: HTML, output of CGI scripts
etc) it will download entire file anyway.

See also
AddHeaders property.

5.14.1 EndRange

Applies to
WinHTTP component as subproperty of Range structure.

Declaration
property EndRange: Integer;

Description
The EndRange property allows to specify the ending position (in bytes) of file for partial download.
Set the EndRange to 0 if you would like to download data till the end of file.

See also
StartRange property.

5.14.2 StartRange

Applies to
WinHTTP component as subproperty of Range structure.

Declaration
property StartRange: Integer; //

Description

WinHTTP component22

© 1999-2002, UtilMind Solutions®

The StartRange property specifies the starting position (in bytes) of the block of data to download.

For example, if StartRange = 50 and EndRange = 0, the WinHTTP will download the file beginning
from 50th byte till the end of file. If StartRange = 50 and EndRange = 89, it downloads 40 bytes
from 50th till 89th byte.

If StartRange = 0, the WinHTTP will read data from beginning of file.

See also
EndRange property.

5.15 Referer

Applies to
WinHTTP component.

Declaration
property Referer: String;

Description
The Referer property specifies the location of the document from which the URL in the request was
obtained. If this parameter is empty, no "referrer" is specified.

See also
URL property.

5.16 RequestMethod

Applies to
WinHTTP component.

Declaration
type
 TWinHTTPRequestMethod = (rmAutoDetect, rmGET, rmPOST);

property RequestMethod: TWinHTTPRequestMethod;

Description
The RequestMethod (HTTP method) property is instruction sent in a request message that notifies
an HTTP server of the action to perform on the specified resource.

For example, rmGET specifies that a resource is being retrieved from the server. rmPOST specifies
that client should upload (post) some specific information which should processed by server before
downloading the data.

When RequestMethod is rmAutoDetect, the HTTP component will autimatically detect how to
request data from server. When POSTData string is empty, component will use GET method. If
POSTData specified, POST method will be used.

 When you reading data from CGI script using GET method, you should specify reqired
information behind question mark, i.e.: http://www.website.com/cgi-
bin/script.cgi?datafield1=datavalue2&datafield2=datavalue2

Properties 23

© 1999-2002, UtilMind Solutions®

If CGI program accepts data via POST method, you should specify required data in the POSTData
property together with the URL string.

Example 1: (requesting data from the CGI script (at DelphiPages.com) via GET method)
procedure TForm1.ReadBtnClick(Sender: TObject);
begin
 WinHTTP1.URL :=
'http://www.delphipages.com/result.cfm?SR=HTTP&AO=and&RequestTimeout=500
';
 WinHTTP1.Read;
end;

procedure TForm1.WinHTTP1Done(Sender: TObject; ContentType: string;
FileSize: Integer; Stream: TStream);
begin
 // Receiving content from Stream
end;

{ Click link below to see demo:
http://www.delphipages.com/result.cfm?SR=HTTP&AO=and&RequestTimeout=500 }

Example 2: (requesting data from the CGI script (at Torry.net) via POST method)
procedure TForm1.ReadBtnClick(Sender: TObject);
begin
 WinHTTP1.URL := 'http://www.torry.net/quicksearch.php';
 WinHTTP1.POSTData := 'String=HTTP&Exact=Yes&Title=No';
 WinHTTP1.Read;
end;

procedure TForm1.WinHTTP1Done(Sender: TObject; ContentType: string;
FileSize: Integer; Stream: TStream);
begin
 // Receiving content from Stream
end;

See also
URL property.

5.17 ShowGoOnlineMessage

Applies to
WinHTTP component.

Declaration
property ShowGoOnlineMessage: Boolean;

Description
The ShowGoOnlineMessage property controls whether the component could display standard
Internet Explorer's dialog, requesting to switch to the online mode to download fresh content from
specified URL.

http://www.delphipages.com/result.cfm?SR=HTTP&AO=and&RequestTimeout=500

WinHTTP component24

© 1999-2002, UtilMind Solutions®

Set ShowGoOnlineMessage property to True, if you want to display this dialog before HTTP request,
when the global online status is "Work Offline" (can be specified by user selecting "File | Work
Offline" menu item in Internet Explorer window).

See also
URL, WorkOffline properties;
IsGlobalOffline method.

5.18 Suspended

Applies to
WinHTTP component.

Declaration
property Suspended: Boolean;

Description
The Suspended property indicates whether a thread (used for downloading) is currenly suspended.

Set Suspended to True to suspend download process temorary; set it False to resume it.

See also
Thread, ThreadPriority and WaitThread properties.

5.19 Timeouts

Applies to
WinHTTP component.

Declaration
type
 TWinHTTPTimeouts = class(TPersistent)
 published
 property ConnectTimeout: DWord default 0;
 property ReceiveTimeout: DWord default 0;
 property SendTimeout: DWord default 0;
 end;

property Timeouts: TWinHTTPTimeouts;

Description
The Timeouts structure used to specify the time-out values for HTTP requests. All units are in
milliseconds. If values are set to 0, the component will use default sustem values.

There are three time-out values:

Properties 25

© 1999-2002, UtilMind Solutions®

 ConnectTimeout Sets or retrieves the time-out value to use for Internet connection requests. If

a connection request takes longer than this time-out value, the request is
canceled. When attempting to connect to multiple IP addresses for a single
host (a multihome host), the timeout limit is cumulative for all of the IP
addresses.

 ReceiveTimeout The time-out value, in milliseconds, to receive a response to a request. If the

receiving of data takes longer than this time-out value, the receiving is
canceled.

 SendTimeout The time-out value to send a request. If the send takes longer than this time-

out value, the send is canceled.

5.19.1 ConnectTimeout

Applies to
WinHTTP component.

Declaration
property ConnectTimeout: DWord;

Description
The ConnectTimeout property sets or retrieves the time-out value to use for Internet connection
requests. If a connection request takes longer than this time-out value, the request is canceled.
When attempting to connect to multiple IP addresses for a single host (a multihome host), the
timeout limit is cumulative for all of the IP addresses.

See also
ReceiveTimeout and SendTimeout properties.

5.19.2 ReceiveTimeout

Applies to
WinHTTP component.

Declaration
property ReceiveTimeout: DWord;

Description
The ReceiveTimeout property sets or retrieves the time-out value to use for Internet connection
requests. If the receiving of data takes longer than this time-out value, the receiving is canceled.

See also
ConnectTimeout and SendTimeout properties.

5.19.3 SendTimeout

Applies to
WinHTTP component.

Declaration
property SendTimeout: DWord;

Description
The SendTimeout property sets or retrieves the time-out value to use for Internet connection
requests. If the send takes longer than this time-out value, the send is canceled.

WinHTTP component26

© 1999-2002, UtilMind Solutions®

See also
ConnectTimeout and ReceiveTimeout properties.

5.20 Thread

Applies to
WinHTTP component.

Declaration
property Thread: TCustomThread; // Read-only !!

Description
The Thread property is the pointer to the process thread, which used for downloading the data from
the Web. This is read-only public property.

See also
Suspended, ThreadPriority and WaitThread properties.

5.21 ThreadPriority

Applies to
WinHTTP component.

Declaration
property ThreadPriority: TThreadPriority;

Description
ThreadPriority indicates the priority used when scheduling the thread. Adjust the priority higher or
lower as needed.

TThreadPriority type defines the possible values for the Priority property of the Thread, as defined in
the following table. The system schedules CPU cycles to each thread based on a priority scale; the
Priority property adjusts a thread's priority higher or lower on the scale.

Values Meaning

 tpIdle The thread executes only when the system is idle. The system will not interrupt
other threads to execute a thread with tpIdle priority.

 tpLowest The thread's priority is two points below normal.

 tpLower The thread's priority is one point below normal.

 tpNormal The thread has normal priority.

 tpHigher The thread's priority is one point above normal.

 tpHighest The thread's priority is two points above normal.

 tpTimeCritical The thread gets highest priority.

Warning

 Boosting the thread priority of a CPU intensive operation may "starve" the other threads in the
application. Only apply priority boosts to threads that spend most of their time waiting for external
events.

See also
Thread, Suspended and WaitThread properties.

Properties 27

© 1999-2002, UtilMind Solutions®

5.22 TransferBufferSize

Applies to
WinHTTP component.

Declaration
type
 TBufferSize = 256..MaxInt; // 2147483647 bytes maximum

property ReadBufferSize: TBufferSize; // 4096 bytes by default

Description
The TransferBufferSize property specifies the size of buffer (in bytes) for writing or reading data from
the Web. For example, if TransferBufferSize is 4096 and you call Read method, the WinHTTP will
read data by 4Kb blocks and trigger OnProgress event every time after downloading each 4Kb of
data.

 Also the value of TransferBufferSize serves as the size of rollback chunk, which automatically
read the component when resuming the downloading to local file on call of Resume method.

See also
Read, Pause, Resume and Upload methods and OnProgress event.

5.23 URL

Applies to
WinHTTP component.

Declaration
property URL: String;

Description
The URL property specifies the location of the Web resource in the Internet (address of document,
file, CGI program etc) to download data from remote HTTP server.

The URL address should be specified in following form:
[http[s]://]hostname[[:port]/objectname]

Examples:
http://www.appcontrols.com/download/diskcontrols_trial.exe
utilmind.com:80
https://secure.element5.com/register.html?productid=140005

 The WinHTTP supports secure transaction semantics. This translates to using Secure Sockets
Layer/Private Communications Technology (SSL/PCT) and is only meaningful in HTTP requests.
You can specify URLs either with http:// or https:// prefixes.

See also
Referer property.

5.24 Username

Applies to
WinHTTP components.

http://www.appcontrols.com/download/diskcontrols_trial.exe

WinHTTP component28

© 1999-2002, UtilMind Solutions®

Declaration
property Username: String;

Description
The Username property specifies the username to access the data in password protected Web
directories. You don't need to specify the username if you reading non-protected data.

 You can also specify the login information dynamically, when it necessary, in the
OnPasswordRequest event handler.

See also
Password property and OnPasswordRequest event.

5.25 WaitThread

Applies to
WinHTTP components.

Declaration
property WaitThread: Boolean;

Description
The WaitThread property controls whether the procedure that calls the Read method (which
downloads the data from the Web) should be suspended and wait until the scanning process will be
done.

Set the WaitThread to True, if you would like to read the data from the Web so that the application
does not continue with next lines of code after calling the Read method. Your application will done
download (or inform about error) before continuing to next step.

 If your application can wait, until the the HTTP request will be completed, only for some limited
time interval — specify WaitTimeout property.

See also
Thread, ThreadPriority and Suspended properties;
Read method.

5.26 WaitTimeout

Applies to
WinHTTP component.

Declaration
property WaitTimeout: Integer;

Description
The WaitTimeout property specifies the time interval (limit), in milliseconds unit, which application
able to wait until the HTTP request will be completed.

For example, if the maximum time which you can allow to complete HTTP request is 5 seconds, set
this value to 5000 (milliseconds). If application can wait infinitely, set WaitTimeout to 0.

 When the timeout is expired, the component automatically terminates the HTTP request. To be
notified when the WaitTimeout is expired — write OnWaitTimeoutExpired event handler.

Properties 29

© 1999-2002, UtilMind Solutions®

Notes
The WaitTimeout only works together with WaitThread property, only when it set to True.

See also
WaitThread, Thread, ThreadPriority and Suspended properties;
Read and Abort methods;
OnWaitTimeoutExpired event.

5.27 WorkOffline

Applies to
WinHTTP component.

Declaration
property WorkOffline: Boolean;

Description
The WorkOffline property controls whether you would like to browse the Web data offline, and read
cached pages even if user are disconnected from Internet.

If requested file is not available for offline reading, the WinHTTP component will try to connect the
remote host to download data from the Web. If user is disconnected, OnHostUnreachable event will
occurs.

This feature is the same as "Work Offline" option of the MS Internet Explorer. All requested data will
be read from cache instead of downloading files from the Web.

 The WorkOffline property works even if caching features is disabled (even if coAlwaysReload
value of CacheOptions is True).

See also
CacheOptions property;
OnDone and OnHostUnreachable events.

6 Methods

6.1 Abort

Applies to
WinHTTP components.

Declaration
procedure Abort(DeleteOutputFile: Boolean = False; HardTerminate:
Boolean = False);

Description
The Abort method terminates execution of thread which reads the data from the Web by HTTP(s)
protocol. After calling the Abort method, the OnAborted event occurs.

The Abort method contains 2 optional parameters:

 DeleteOutputFile — deletes the file, with downloaded information, specified in OutputFileName

property, if True;

 HardTerminate — terminate the thread which run the download process imediately, without

WinHTTP component30

© 1999-2002, UtilMind Solutions®

releasing Internet handles. Do not set this parameter to True, unless it really necessary, since
hard termination can lead to memory leaks!

 The download process can be resumed, in case if you downloading data to file specified in
OutputFileName property. You just need specify the incompletely downloaded file to
OutputFileName property again and call Resume method.

 However, even if you're downloading the data just to memory instead of file, the component can
easily resume the downloading (on call of Read method), because of smart behaviours of Internet
Explorer's cache. In case if you have specified to use cache in the CacheOptions property —
everything can be retreived from cache, even broken, interrupted downloads.

See also
OutputFileName and CacheOptions properties;
Read, Pause and Resume methods;
OnAborted event.

6.2 IsGlobalOffline

Applies to
WinHTTP component.

Declaration
function IsGlobalOffline: Boolean;

Description
The IsGlobalOffline method-function returns whether the global online status of Internet Explorer is
offline. Users can change this status selecting "File | Work Offline" menu item in Internet Explorer's
window.

See also
WorkOffline and ShowGoOnlineMessage properties.

6.3 Pause

Applies to
WinHTTP component.

Declaration
procedure Pause;

Description
The Pause method terminates execution of running download process. Actually, this method is the
same as "Abort" method with both its optional parameters set to False: Abort(False, False).

 The download process can be resumed, in case if you downloading data to file specified in
OutputFileName property. You just need specify the incompletely downloaded file to
OutputFileName property again and call Resume method.

 However, even if you're downloading the data just to memory instead of file, the component can
easily resume the downloading (on call of Read method), because of smart behaviours of Internet
Explorer's cache. In case if you have specified to use cache in the CacheOptions property —
everything can be retreived from cache, even broken, interrupted downloads.

Methods 31

© 1999-2002, UtilMind Solutions®

See also
OutputFileName and CacheOptions properties;
Read, Pause and Resume methods;
OnAborted event.

6.4 Read

Applies to
WinHTTP component.

Declaration
function Read(ForceWaitThread: Boolean = False): Boolean; // returns
False if busy OR WaitTimeout expired

Description
The Read method initiate the HTTP request to download the data from location specified in the URL
property. Function returns False if component currently busy (already processing request), OR
WaitTimeout is expired (if you waiting for completion of request in the function that calls this medod,
using WaitThread property).

The ForceWaitThread is optional (not necessary to specify) parameter, which can temporary set
WaitThread to True for only current call of Read method.

Example (code demonstrates how to search for 'HTTP' keyword in Torry.net)
Delphi:
procedure TForm1.ReadBtnClick(Sender: TObject);
begin
 WinHTTP1.URL := 'http://www.torry.net/quicksearch.php';
 WinHTTP1.POSTData := 'String=HTTP&Exact=Yes&Title=No';
 WinHTTP1.Read;
end;

C++ Builder:
void __fastcall TForm1::ReadBtnClick(TObject *Sender)
{
 WinHTTP1->URL = "http://www.torry.net/quicksearch.php";
 WinHTTP1->POSTData = "String=HTTP&Exact=Yes&Title=No";
 WinHTTP1->Read();
}

Remarks

 The Read method fails and OnHostUnreachable event occurs if you're trying to POST some data
to the CGI but user currently working offline (even if connection to the Internet present). Posting to
the CGI programs requires active Internet connection.

See also
URL, RequestMethod, POSTData and Busy properties;
WaitThread and WaitTimeout properties;
Upload, Abort, Pause and Resume methods;
HTTPReadString function.

WinHTTP component32

© 1999-2002, UtilMind Solutions®

6.5 ReadRange

Applies to
WinHTTP component.

Declaration
function ReadRange(StartRange: Cardinal; EndRange: Cardinal = 0;
ForceWaitThread: Boolean = False);

Description
The ReadRange property downloads part of some binary data file from the Web. The part of that file
can be specified by StartRange and EndRange parameters.

StartRange parameter specifies starting position of data block to download, and the EndRange
parameter specified the end of the block. In case if EndRange is 0, the component will download
part from StartRange till the end of file.

 Alternatively, for partial download, you can use StartRange and EndRange properties in the
Range structure and use usual Read method.

See also
URL, RequestMethod and Busy properties;
WaitThread and WaitTimeout properties;
Read, Abort, Pause, Resume methods.

6.6 Resume

Applies to
WinHTTP component.

Declaration
procedure Resume;

Description
The Resume method used to resume downloading of data to some file specified in the
OutputFileName property.

After calling of this method, the component determinates the size of file specified in the
OutputFileName, and initiates downloading of the rest of broken or paused download, to append the
rest of data to the end of local file.

 The WinHTTP automatically uses simple and smart scheme of checking whether the file which
you're trying to Resume has been updated or modified. Before downloading of the data which
should be appended, it downloads small data chunk (with size specified in TransferBufferSize
property), before the break, and compares with the same data chunk at the end of file.

In case if compared data are equal — it continue downloading and append downloaded data to the
end of local file. Otherwise it assume that file which beging downloaded has been changed, and
starts download from beginning.

By default TransferBufferSize = 4Kb, so every time when you call Resume method, the component
download 4Kb of extra "rollback" data to check file consistancy.

Note

 Use Resume method only if you downloading the data to file, specified in the OutputFileName

Methods 33

© 1999-2002, UtilMind Solutions®

property. Otherwise, in case if file name not specified, it will download some object from the Web
from beginning. Effect will be the same as you calling Read method.

 You can use Resume method instead of Read. In case if file does not exists — Resume method
will create it and download some file from beginning.

See also
OutputFileName, CacheOptions and TransferBufferSize properties;
Read, Pause and Abort methods.

6.7 Upload

Applies to
WinHTTP component.

Declaration
function Upload(NumberOfFields: Word): Boolean; // returns False if busy

Description
The Upload method starts HTTP request to upload data via HTTP protocol, using multipart/form-
data POST method, introduced in RFC 1867.

Before starting the uploading, it requests fields and their names which should be uploaded using
OnUploadFieldRequest event. To specify number of fields which should be uploaded — pass it in
NumberOfFields parameter (this specifies how many times the OnUploadFieldRequest should be
triggered to request another piece of data).

After requesting the data required to build HTTP request, it starts it with multipart/form-data Content
Type in the HTTP header and constantly trigger OnUploadProgress event after each data block with
size specified in TransferBufferSize property.

Example
procedure TForm1.UploadBtnClick(Sender: TObject);
begin
 WinHTTP1.Upload(2); // upload 2 files
{ To specify the data which should uploaded — use OnUploadFieldRequest
event }
end;

Remarks

 Unfortunately the web server itself can NOT receive files by HTTP protocol. For this purpose you
should use some intermediate CGI program, in example, written in C, Perl or PHP (or even in
Delphi, if you're running Windows server). If you would like to get examples on how to create scripts
which can receive files by HTTP protocol, please check out PHP.net (PHP manuals), or www.cgi-
resources.com (CGI Resource Index).

 Some versions of Apache HTTP server has a bug which does not allow to upload files to
password protected directories. In case if you always receive timeout error when trying to upload file
to password protected URL and even modifications of timeout values in PHP.INI won't help, don't
despair and try to upload it to normal directory.

Check out also OnUploadFieldRequest topic for more detailed description on how to upload data.

See also
UploadByFieldNames method;

http://www.faqs.org/rfcs/rfc821.html
http://www.php.net
http://www.cgi-resources.com

WinHTTP component34

© 1999-2002, UtilMind Solutions®

OnUploadFieldRequest, OnUploadProgress and OnUploadCGITimeoutFailed events;
Read, Abort methods and TransferBufferSize property.

6.8 UploadByFieldNames

Applies to
WinHTTP component.

Declaration
function UploadByFieldNames(const FieldNames: Array of String): Boolean;
// returns False if busy

Description
The UploadByFieldNames, like the Upload method starts HTTP request to upload data via HTTP
protocol, using multipart/form-data POST method, introduced in RFC 1867.

 However, unlike, the Upload method, the UploadByFiles allows to specify the field names as
parameters, so in the OnUploadFieldRequest event you just need to write the data to UploadStream
(data proper to each FieldName), without requiring to specify the FieldName's.

Before starting the uploading, it requests fields which should be uploaded using
OnUploadFieldRequest event. To specify number of fields which should be uploaded — pass it in
NumberOfFields parameter (this specifies how many times the OnUploadFieldRequest should be
triggered to request another piece of data).

After requesting the data required to build HTTP request, it starts it with multipart/form-data Content
Type in the HTTP header and constantly trigger OnUploadProgress event after each data block with
size specified in TransferBufferSize property.

Example
procedure TForm1.UploadBtnClick(Sender: TObject);
begin
 acHTTP1.Upload(['field1', 'field2']); // upload 2 files
{ To specify the data which should uploaded — use OnUploadFieldRequest
event }
end;

Remark

 Unfortunately the web server itself can NOT receive files by HTTP protocol. For this purpose you
should use some intermediate CGI program, in example, written in C, Perl or PHP (or even in
Delphi, if you're running Windows server). If you would like to get examples on how to create scripts
which can receive files by HTTP protocol, please check out PHP.net (PHP manuals), or www.cgi-
resources.com (CGI Resource Index).

Check out also OnUploadFieldRequest topic for more detailed description on how to upload data.

See also
UploadByFieldNames method;
OnUploadFieldRequest and OnUploadProgress events;
Read, Abort methods and TransferBufferSize property.

http://www.faqs.org/rfcs/rfc821.html
http://www.php.net
http://www.cgi-resources.com

Events 35

© 1999-2002, UtilMind Solutions®

7 Events

7.1 OnAborted

Applies to
WinHTTP components.

Declaration
property OnAborted: TNotifyEvent;

Description
The OnAborted event occurs when user interrupts the process of reading the data from Internet,
after calling the Abort method.

See also
Abort method;
OnWaitTimeoutExpired event.

7.2 OnAnyError

Applies to
WinHTTP component.

Declaration
property OnAnyError: TNotifyEvent;

Description
The OnAnyError event occurs when ANY error has occured: connection lost (OnConnLost), host
unreachable (OnHostUnreachable) or server returned the HTTP error in response header
(OnHTTPError).

See also
OnConnLost, OnHostUnreachable and OnHTTPError events.

7.3 OnBeforeSendRequest

Applies to
WinHTTP component.

Declaration
type
 TWinHTTPBeforeSendRequest = procedure(Sender: TObject; hRequest:
hInternet) of object;

property OnBeforeSendRequest: TWinHTTPBeforeSendRequest;

Description
The OnBeforeSendRequest event occurs just before the component sends HTTP query to the
server, at once after opening the internet request (by HTTPOpenRequest function of WinInet). The
hRequest parameter is the Internet handle, returned by HTTPOpenRequest and can be used to
specify additional Internet options to the request.

Write OnBeforeSendRequest event handler if you want to specify custom Internet options using "low
level" InternetSetOptions function (from WinInet unit), to the hRequest handle.

WinHTTP component36

© 1999-2002, UtilMind Solutions®

Example
procedure TForm1.WinHTTP1BeforeSendRequest(Sender: TObject;
 hRequest: Pointer);
begin
 InternetSetOption(hRequest, INTERNET_OPTION_IGNORE_OFFLINE, nil, 0);
end;

7.4 OnConnLost

Applies to
WinHTTP component.

Declaration
type
 TWinHTTPConnLostEvent = procedure(Sender: TObject;
 const ContentType: String; FileSize, BytesRead: Integer;
 Stream: TStream) of object;

property OnConnLost: TWinHTTPConnLostEvent;

Description
The OnConnLost event occurs when the connection with remote server lost for some reason, at the
moment of downloading the data. However you still can use some data which was already
downloaded (Stream parameter).

There are following parameters which passes to the event handler:
Parameters Meaning

 ContentType the media type of received data. For example if you downloaded usual text-file, the
ContentType will be "text/plan". For HTML page ContentType will "text/html", for
executable file — "application/binary" and "image/jpeg" for JPEG, JPG and JPE
files.
For more information about Internet media types, please read RFC 2045, 2046,
2047, 2048, and 2077 (http://www.oac.uci.edu/indiv/ehood/MIME/MIME.html).
Check out also the Internet media type registry at ftp://ftp.iana.org/in-
notes/iana/assignments/media-types;

 FileSize total size of data which we've tryed to download, in bytes (if was possible to
determinate). Note: some servers can send files without information about content
length;

 BytesRead size of data which already received, in bytes;

 Stream stream which contains already downloaded data. (Check out description of
TStream, TMemoryStream and TFIleStream classes for more info).

See also
OnAnyError, OnProgress and OnDone events.

7.5 OnDone

Applies to
WinHTTP component.

Declaration
type
 TWinHTTPDoneEvent = procedure(Sender: TObject;
 const ContentType: String;
 FileSize: Integer; Stream: TStream) of object;

http://www.oac.uci.edu/indiv/ehood/MIME/MIME.html

Events 37

© 1999-2002, UtilMind Solutions®

property OnDone: TWinHTTPDoneEvent;

Description
The OnDone event occurs when the WinHTTP component has successfully downloaded requested
data from the Web.

The component pass to the OnDone event handler 3 following parameters:
Parameters Meaning

 ContentType the media type (also known as Multipurpose Internet Mail Extension (MIME) type) of

downloaded data. For example if you downloaded usual text-file, the ContentType will
be "text/plan". For HTML page ContentType will "text/html", for executable file —
"application/binary" and "image/jpeg" for JPEG, JPG and JPE files.
For more information about Internet media types, please read RFC 2045, 2046,
2047, 2048, and 2077 (http://www.oac.uci.edu/indiv/ehood/MIME/MIME.html).
Check out also the Internet media type registry at ftp://ftp.iana.org/in-
notes/iana/assignments/media-types;

 FileSize size of downloaded data in bytes;

 Stream the memory stream which contains downloaded data (check out description of

TMemoryStream class for more info). It can be nil (null) if the OutputFileName
property was specified before request (before calling the Read method).

Example
Delphi:
procedure TForm1.WinHTTP1Done(Sender: TObject;
 ContentType: string; FileSize: Integer; Stream: TStream);
var
 Str: String;
begin
 if Stream = nil then
 Exit; // can be already stored to file specified by OutputFileName

 with Stream as TMemoryStream do
 if OutToMemoBox1.Checked then // output to Memo1
 begin
 SetLength(Str, Size);
 Stream.Read(Str[1], Size); // or Move(Memory^, Str[1], Size);
 Memo1.Text := Str;
 end
 else
 begin // save to file
 Memo1.Text := 'Saved to c:\httptest.dat';
 SaveToFile('c:\httptest.dat');
 end;

 StatusBar1.Panels[0].Text := 'Successfully downloaded ' +
IntToStr(FileSize) + ' bytes';
end;

C++ Builder:
void __fastcall TForm1::WinHTTP1Done(TObject *Sender,
 AnsiString ContentType, int FileSize, TStream *Stream)
{
 AnsiString Str;

http://www.oac.uci.edu/indiv/ehood/MIME/MIME.html

WinHTTP component38

© 1999-2002, UtilMind Solutions®

 if (Out1->Checked) {
 Str.SetLength(Stream->Size);
 Move(((TMemoryStream*)Stream)->Memory, &Str[1], Stream->Size);
 Memo1->Text = Str;
 }else {
 Memo1->Text = "Saved to c:\httptest.dat";
 ((TMemoryStream*)Stream)->SaveToFile("c:\httptest.dat");
 }

 StatusBar1->Panels->Items[0]->Text = "Successfully downloaded " +
IntToStr(FileSize) + " bytes";
}

See also
OnProgress and OnHTTPError events; Read method;
OutputFileName and FileName properties.

7.6 OnDoneInterrupted

Applies to
WinHTTP component.

Declaration
property OnDoneInterrupted: TNotifyEvent;

Description
The OnDoneInterrupted event occurs if the download process was interrupted in OnHeaderInfo
event handler.

This is optional event to be notified when the component has terminated the HTTP query after
receving the headers of the document before that the download process begins. This event only
executed if you set ContinueDownload parameter to False in the OnHeaderInfo event handler.

 Note, that no errors events will be receive if you set ContinueDownload of OnHeaderInfo to True,
but this event. So you must handle all errors inside OnHeaderInfo event.

See also
OnHeaderInfo event.

7.7 OnHeaderInfo

Applies to
WinHTTP component.

Declaration
type
 TWinHTTPHeaderInfoEvent = procedure(Sender: TObject; ErrorCode:
Integer;
 const RawHeadersCRLF, ContentType, ContentLanguage, ContentEncoding:
String;
 ContentLength: Integer; const Location: String;
 const Date, LastModified, Expires: TDateTime; const ETag: String;
 var ContinueDownload: Boolean) of object;

property OnHeaderInfo: TWinHTTPHeaderInfo;

Events 39

© 1999-2002, UtilMind Solutions®

Description
The OnHeaderInfo event returns the headers the response from the HTTP server, before
downloading the document content.

You can write this event handler to receive all response headers and to decide whether you want to
download the document. If you decided to NOT download it, (for example, if ErrorCode is not 200-
OK, and not 206-Partial content) simply set ContinueDownload parameter to False in the event
handler.

The WinHTTP passes to the OnHeaderInfo event handler following parameters:
Parameters Meaning

 ErrorCode the status code of HTTP request (see the list of possible status codes);

 RawHeadersCRLF contains ALL the headers reseived from the HTTP server in response to
request, as plain text string, separated by CRLF characters (0D0A);

 ContentType contains the identifier of MIME-type of requested document. For more
information about Internet media types, please read RFC 2045, 2046, 2047,
2048, and 2077. Check out also the Internet media type registry at
ftp://ftp.iana.org/in-notes/iana/assignments/media-types;

 ContentLanguage identifies a language of document content (if provided), or contains empty
string if the language is not provided or not applicable for the type requested
document;

 ContentEncoding identifies the encoding method of requested document;

 ContentLength determinates the size of document, if the document is binary file.
Unfortunately most servers does not provide the content length for ASCII
documents with "text/*" MIME-type, since their content can be generated
dynamically by CGI programs;

 Location determines the location from where the content is about to be downloaded
(use this parameter to get the actual location of document in case if
connection has been redirected by server to another location);

 Date shows the date and time at which the HTTP response was originated;

 LastModified the date and time at which the server belives the resource was last modified.
Note: Servers without a clock assign ETag parameter instead of last
modified and expiration time;

 Expires the date and time after which the resource should be considered outdated.
Note: Servers without a clock assign ETag parameter instead of last
modified and expiration time;

 ETag ETag, also known as "Expires Tag", or some another additional information
from server. This information generated automatically by server without a
clock (in this case LastModified and Expires values are not set), or
generated dynamically by CGI program (in Perl or PHP) and used to transfer
some important information, i.e: whether the document expired etc;

 ContinueDownload used to interrupt the download process. If you don't want to continue
download the requested file — set it to False.

Notes

 If you set ContinueDownload parameter to True (imediately terminate the process without
downloading of the content of document), neither OnAnyError and OnHTTPError events will not
called. The only event which you will received after it — is OnDoneInterrupted. This means that if
you plan to handle HTTP errors in OnHTTPError event handler, you must move this code to
OnHeaderInfo event handler.

 This event does not occur if you downloading data from local file (use "file://" prefix in the URL).

WinHTTP component40

© 1999-2002, UtilMind Solutions®

See also
OnDone, OnDoneInterrupted, OnHTTPError and OnAnyError events;
Abort method;
HTTP status codes.

7.8 OnHostUnreachable

Applies to
WinHTTP component.

Declaration
property OnHostUnrachable: TNotifyEvent;

Description
The OnHostUnreachable event occurs if the WinHTTP can not connect to the remote host specified
in the URL property. Possible reasons of this problem is:
1. User currently not connected to the Internet;
2. Hostname is unknown (check spelling of domain name);
3. Remote server is down (disconnected from Internet).

Remarks
1.The OnHostUnreachable event occurs also when user currently working offline (even if connection

to the Internet present) and would like to post some data, specified in the POSTData property, to
the CGI program. Posting to the CGI programs requires active Internet connection.

Example
Delphi:
procedure TForm1.WinHTTP1HostUnreachable(Sender: TObject);
begin
 Application.MessageBox(PChar('Host http://' + WinHTTP1.HostName + ' is
unreachable.'#13'Please check your Internet connection and'#13'retry
your HTTP request again later.'),
 PChar(Application.Title),
 MB_OK or MB_ICONSTOP);
end;

C++ Builder:
void __fastcall TForm1::WinHTTP1HostUnreachable(TObject *Sender)
{
 AnsiString Msg =
 "Host http://" + WinHTTP1->HostName + " is unreachable.\n\n"
 "Please check your Internet connection and\n"
 "try to upgrade this software again later.";
 Application->MessageBox(Msg.c_str(),
 Application->Title.c_str(),
 MB_OK | MB_ICONSTOP);
}

See also
URL property; OnAnyError event.

7.9 OnHTTPError

Applies to
WinHTTP component.

Events 41

© 1999-2002, UtilMind Solutions®

Declaration
type
 TWinHTTPErrorEvent = procedure(Sender: TObject;
 ErrorCode: Integer; Stream: TStream) of object;

property OnHTTPError: TWinHTTPErrorEvent;

Description
The OnHTTPError event occurs if some error code has received in the header of response from
HTTP server.

ErrorCode parameter contains the number which identifies the HTTP error (see the list of
HTTP Status Codes to recognize an error).

Stream contains the error page generated by server.

 Most often errors is 404 (requested document not found), 403 (view forbidden) and 500 (CGI
script failed).

 To handle error #401 (Access denied / Password required required to access) — write
OnPasswordRequest event handler. (If OnPasswordRequest event handler exists, OnHTTPError
will not occurs on error 401.)

 Alternatively you can get HTTP error code in OnHeaderInfo event handler and decide whether
to continue download (error page), or not, so this will save some client's bandwidth from
downloading error page from server.

Remarks

 If it returns 0 in ErrorCode paramter, this means that component for some reason is unable to
determinate the status code of HTTP query. However this is not always means fatal error like
OnHostUnreachable. It's possible that server simply did not sent the status code in the header of
response.

Example
Delphi:
procedure TForm1.WinHTTP1HTTPError(Sender: TObject;
 ErrorCode: Integer; Stream: TStream);
var
 Str: String;
begin
 with Stream as TMemoryStream do
 if OutToMemo1.Checked then
 begin // Output to Memo1
 SetLength(Str, Size);
 Move(Memory^, Str[1], Size);
 Memo1.Text := Str;
 end
 else // Save to file
 begin
 Memo1.Text := 'Saved to c:\httptest.dat';
 SaveToFile('c:\httptest.dat');
 end;

 case ErrorCode of
 404: Str := '404: Document not found';

WinHTTP component42

© 1999-2002, UtilMind Solutions®

 500: Str := '500: CGI script failed';
 else // Mysterious reason
 Str := IntToStr(ErrorCode);
 end;

 if (ErrorCode = HTTP_STATUS_OK) or (ErrorCode =
HTTP_STATUS_PARTIAL_CONTENT) then // consts from WinInet.pas
 begin
 ContinueDownload := False;
 Exit;
 end;

 StatusBar1.Panels[0].Text := 'HTTP Error #' + Str;
end;

C++ Builder:
void __fastcall TForm1::WinHTTP1HTTPError(TObject *Sender,
 int ErrorCode, TStream *Stream)
{
 AnsiString Str;

 if (OutToMemo1->Checked) { // Output to Memo1
 Str.SetLength(Stream->Size);
 Move(((TMemoryStream*)Stream)->Memory, &Str[1], Stream->Size);
 Memo1->Text = Str;
 }else { // Save to file
 Memo1->Text = "Saved to c:\httptest.dat";
 ((TMemoryStream*)Stream)->SaveToFile("c:\httptest.dat");
 }

 switch (ErrorCode) {
 case 404: Str = "404: Document not found";
 case 500: Str = "500: CGI script failed";
 default: Str = IntToStr(ErrorCode); // Mysterious reason
 };

 StatusBar1->Panels->Items[0]->Text = "HTTP Error #" + Str;
}

See also
HTTP Status Codes
OnHeaderInfo, OnPasswordRequest, OnAnyError and OnDone events.

7.10 OnOutputFileError

Applies to
WinHTTP component.

Declaration
property OnOutputFileError: TNotifyEvent;

Description
The OnOutputFileError occurs if the HTTP component tries to download data to file, specified in
OutputFileName property, but the file can not be created (e.g. path not exists, or file locked by
system etc).

Events 43

© 1999-2002, UtilMind Solutions®

See also
OutputFileName and OutputFileAttributes properties;
OnAnyError event.

7.11 OnPasswordRequest

Applies to
WinHTTP component.

Declaration
type
 TWinHTTPPasswordRequestEvent = procedure(Sender: TObject;
 const Realm: String; var TryAgain: Boolean) of object;

property OnPasswordRequest: TWinHTTPPasswordRequestEvent;

Description
The OnPasswordRequest event can be used to implement the dialog which asks user for his
username and password to access the password protected Web area.

Set TryAgain parameter to True to retry the HTTP query with correct username and password.
(Don't forget to specify correct login information in this event handler to Username and Password
properties.)

Note

 If you leave this event unhandled (set TryAgain parameter to False), the component will generate
error code #401 (Access Denied), which will be passed to OnHTTPError event.

Example
Delphi:
procedure TForm1.HTTP1PasswordRequest(Sender: TObject;
 const Realm: String; var TryAgain: Boolean);
begin
 { UserPassForm is any form with two edit boxes used for entering the
login information (username and password) }
 UserPassForm.RealmLabel := Realm;
 if UserPassForm.ShowModal = ID_OK then
 begin
 WinHTTP1.Username := UserPassForm.UsernameEdit.Text;
 WinHTTP1.Password := UserPassForm.PasswordEdit.Text;
 TryAgain := True; // Retry HTTP query (download attempt)
 end;
end;

C++ Builder:
void __fastcall TForm1::WinHTTP1PasswordRequest(TObject *Sender,
 AnsiString Realm, bool &TryAgain)
{
 UserPassForm->RealmLabel = Realm;
 if (UserPassForm->ShowModal() == ID_OK)
 {
 WinHTTP1->Username = UserPassForm->UsernameEdit->Text;
 WinHTTP1->Password = UserPassForm->PasswordEdit->Text;
 TryAgain = True; // Retry HTTP query (download attempt)

WinHTTP component44

© 1999-2002, UtilMind Solutions®

 };
}

See also
Username and Password properties; OnHTTPError event;
HTTP Status Codes.

7.12 OnProgress

Applies to
WinHTTP component.

Declaration
type
 TWinHTTPProgressEvent = procedure(Sender: TObject;
 const ContentType: String; FileSize, BytesRead, ElapsedTime,
 EstimatedTimeLeft: Integer; PercentsDone: Byte;
 TransferRate: Single; Stream: TStream) of object;

property OnProgress: TWinHTTPProgressEvent;

Description
The OnProgress event occurs every time when component has successfully downloaded part of
data received in response to HTTP query.

Write OnProgress event handler to show the download progress (PercentsDone parameter
indicates the progress in percents) or handle part of data which already received (Stream
parameter). Also, the WinHTTP component automatically calculate elapsed and estimated time
before finishing download and speed of data transfer.

The WinHTTP passes to the OnProgress event handler following parameters:
Parameter Meaning

 ContentType the MIME-type of received data. For example if you downloaded usual text-file,
the ContentType will be "text/plan". For HTML page ContentType will "text/html",
for executable file — "application/binary" and "image/jpeg" for JPEG, JPG and
JPE files.
For more information about Internet media types, please read RFC 2045, 2046,
2047, 2048, and 2077. Check out also the Internet media type registry at
ftp://ftp.iana.org/in-notes/iana/assignments/media-types;

 FileSize total size of data which we currently downloading, in bytes (if possible to
determinate).
Note: usually server does not provide information about content-length for non-
binary data (i.e: for "text/html" or "text/plain" content types);

 BytesRead size of already received data, in bytes;

 ElapsedTime time elapsed from beginning of download (in seconds);

 EstimatedTimeLeft estimated time left before finishing of download (Formula:
X := FileSize / BytesRead * ElapsedTime - ElapsedTime);

 PercentsDone progress in percents (0%..100%);

 TransferRate speed of data transfer (in Kb/s);

 Stream stream which contains already downloaded data. (Check out description of
TStream, TMemoryStream and TFIleStream classes for more info).

Example
Delphi:

Events 45

© 1999-2002, UtilMind Solutions®

procedure TForm1.HTTP1Progress(Sender: TObject; ContentType: String;
FileSize, BytesRead, ElapsedTime, EstimatedTimeLeft: Integer;
PercentsDone: Byte; TransferRate: Single; Stream: TStream);

begin
 // progress bar position
 CurrentFileProgressBar.Position := PercentsDone;

 // file size
 FileSizeLabel.Caption :=
 Format('File size: %.1f Kb', [FileSize / 1024]);

 // downloaded (in Kb)
 DownloadedLabel.Caption :=
 Format('Downloaded: %.1f Kb:', [BytesRead / 1024]);

 // transfer rate
 TransRateLabel.Caption :=
 Format('Transfer rate: %.1f Kb/s', [TransferRate]);

 // estimated time left
 EstTimeLeftLabel.Caption :=
 Format('Estimated time left: %d:%.2d:%.2d',
 [EstimatedTimeLeft div 60 div 60, // hours
 EstimatedTimeLeft div 60 mod 60, // minutes
 EstimatedTimeLeft mod 60 mod 60]); // seconds
end;

C++ Builder:
void __fastcall TForm1::WinHTTP1Progress(TObject *Sender,
 AnsiString ContentType, int FileSize, int BytesRead,
 int ElapsedTime, int EstimatedTimeLeft,
 BYTE PercentsDone, float TransferRate, TStream *Stream)
{
 // progress bar position
 ProgressCurrentFile->Position = PercentsDone;

 // file size
 FileSizeLabel->Caption =
 Format("File size: %.1f Kb:",
 ARRAYOFCONST(((float)FileSize / 1024)));

 // downloaded (in Kb)
 DownloadedLabel->Caption =
 Format("Downloaded: %.1f Kb:",
 ARRAYOFCONST(((float)BytesRead / 1024)));

 // transfer rate
 TransRateLabel->Caption =
 Format("Transfer rate: %.1f Kb/s",
 ARRAYOFCONST(((float)TransferRate)));

 // estimated time left
 EstTimeLeftLabel->Caption =
 Format("Estimated time left: %d:%.2d:%.2d",
 ARRAYOFCONST((EstimatedTimeLeft / 60 / 60, // hours

WinHTTP component46

© 1999-2002, UtilMind Solutions®

 EstimatedTimeLeft / 60 % 60, // minutes
 EstimatedTimeLeft % 60 % 60))); // seconds
}

See also
OnDone event.

7.13 OnProxyAuthenticationRequest

Applies to
WinHTTP component.

Declaration
type
 TWinHTTPProxyAuthenticationRequestEvent = procedure(Sender: TObject;
 var ProxyUsername, ProxyPassword: String;
 var TryAgain: Boolean) of object;

property OnProxyAuthenticationRequest:
TWinHTTPProxyAuthenticationRequestEvent;

Description
The OnProxyAuthenticationRequest event should be used to prompt users for their
username/password to access the Web via secure proxy server which requires authentication.

Write this event to prompt and specify the ProxyUsername and ProxyPassword parameters,
required for the proxy authentication, and set TryAgain parameter to True, to retry the HTTP query
with provided login information.

 Alternatively you can specify ProxyUsername and ProxyPassword properties in the Proxy
structure, before the request. In case if specified username and password is okay, the
OnProxyAuthenticationRequest event will not occur.

When you specify ProxyUsername and ProxyPassword parameters in this event — they also will be
put to the Proxy structure, to be used on next HTTP request.

Notes

 If your proxy server uses some "challenge-response" authentication scheme — please make
sure that ioKeepConnection option of the InternetOptions is set to True. Otherwise, connection
with proxy could be dropped.

 If you leave this event unhandled (if you set TryAgain parameter to False), the component will
generate error code #407 (Proxy Authentication Required), which will be passed to OnHTTPError
event.

See also
Proxy and InternetOptions properties;
OnHTTPError event;
HTTP Status Codes.

7.14 OnRedirected

Applies to
WinHTTP component.

Events 47

© 1999-2002, UtilMind Solutions®

Declaration
type
 TWinHTTPRedirected = procedure(Sender: TObject; const NewURL: String)
of object;

property OnRedirected: TWinHTTPRedirected;

Description
The OnRedirected event occurs if the server has redirected the HTTP query to another location
(when redirection has been detected by internal status callback procedure). This means that the
data which about to be posted, and the document which about to be downloaded in response of
your query, will be taken from another location, specified in NewURL parameter.

See also
Location parameter in OnHeaderInfo event.

7.15 OnUploadCGITimeoutFailed

Applies to
WinHTTP component.

Declaration
procedure OnUploadCGITimeoutFailed: TNotifyEvent;

Description
The OnUploadCGITimeoutFailed event occurs if server has dropped connection while uploading
some files to CGI script.

 If the CGI program is PHP script, then sometime this can be fixed by increasing of
"max_execution_time" and "max_input_time" variables in configuration (PHP.ini).

See also
Upload method.

7.16 OnUploadFieldRequest

Applies to
WinHTTP component.

Declaration
type
 TWinHTTPUploadFieldRequest = procedure(Sender: TObject;
 FileIndex: Word; UploadStream: TStream;
 var FieldName, FileName: String) of object;

procedure OnUploadFieldRequest: TWinHTTPUploadFieldRequest;

Description
The OnUploadFieldRequest should be used to put the FieldName, FileName (if required), and data
to the stream (UploadStream parameter) for further uploading to the CGI application.

The WinHTTP passes to the OnUploadFieldRequest event handler following parameters:
Parameter Meaning
FileIndex parameter specifies the index of data-field/file which should be uploaded. (Note:

Total number of fields/files which should be uploaded must be specified on call of

WinHTTP component48

© 1999-2002, UtilMind Solutions®

Upload method. This parameter is the index of file in queue.)

UploadStream parameter is the empty stream which should be used to write data for uploading.
(Use Stream.Write() method to put data to stream, however, since this is
TMemoryStream you can use other methods of TMemoryStreams).

FieldName should be specified in this event handler. This is the name of form field.

FileName is the optional parameter used to specify local path and filename of uploaded file. It
does not transmitted to CGI if empty. Use it only if your CGI application should
know the real filename.

Example
procedure TForm1.WinHTTP1UploadFieldRequest(Sender: TObject;
 FileIndex: Word; UploadStream: TStream; var FieldName, FileName:
String);
begin
 if FileIndex = 0 then // first file
 begin
 FieldName := 'img1';
 FileName := 'c:\1.jpg';
 end
 else // second file, if FileIndex = 1
 begin
 FieldName := 'img2';
 FileName := 'c:\2.jpg';
 end;

 // put file data to stream
 TMemoryStream(UploadStream).LoadFromFile(FileName);
end;

Remarks

 Unfortunately the web server itself can NOT receive files by HTTP protocol. For this purpose you
should use some intermediate CGI program, in example, written in C, Perl or PHP (or even in
Delphi, if you're running Windows server). If you would like to get examples on how to create scripts
which can receive files by HTTP protocol, please check out PHP.net (PHP manuals), or www.cgi-
resources.com (CGI Resource Index).

Here is an example of PHP script which we are using to upload picture from one our program:
<?php

$picdir = '/data/www/domains/images.utilmind.com/images/';

if (($index == '') || ($user == '')) die('0'); // not enough
parameters POST'ed

$big = $picdir.$user.$index.'.big'; // big picture
$small = $picdir.$user.$index.'.small'; //thumbnailed image

if ((isset($pic)) && (isset($smallpic))) { // upload (else -- delete
it)
 copy($pic, $big) or die('2'); // store big picture
 copy($smallpic, $small) or die('3'); // store thumbnailed image
} else {
 if (file_exists($big)) unlink($big); // delete big picture

http://www.php.net
http://www.cgi-resources.com

Events 49

© 1999-2002, UtilMind Solutions®

 if (file_exists($small)) unlink($small); //delete thumbnailed image
}

?>
1

 If script above does not work for some reason — use $_FILES predefined variable
($_FILES['fieldname']['name'] returns the name of uploaded file, $_FILES['fieldname']['tmp_name']
returns the location where uploaded data temporary stored. Following PHP function moves
temporary file to permanent location:
move_uploaded_file($_FILES['field_name']['tmp_name'],
$_SERVER['DOCUMENT_ROOT'].'/permanent_location/file.dat') or
die('Cannot copy file!');

 Here is the link to nice file uploader class in PHP: http://dave.imarc.net/downloads/fileupload.zip

And on Client side we are using following code to POST required data:
procedure TMEMPicUploader.UploadPictureHTTPFieldRequest(Sender:
TObject;
 FileIndex: Word; UploadStream: TStream; var FieldName,
 FileName: String);
const
 FieldNames: Array[0..3] of String = ('user', 'index', 'pic',
'smallpic');
var
 W, H: Integer;
 PicIndexStr: String;
 BigImage, SmallImage: TacProportionalImage;
begin
 FieldName := FieldNames[FileIndex];

 with UploadStream, Client.MyProfile do
 case FileIndex of
 0: Write(Username[1], Length(Username));
 1: begin
 PicIndexStr := IntToStr(FPictureIndex);
 UploadStream.Write(PicIndexStr[1], Length(PicIndexStr));
 end;
 else
 FileName := Username;

 if FileIndex = 2 then
 FPicture.Graphic.SaveToStream(UploadStream) // normal picture
 else
 begin // thumbnailed picture
 BigImage := TacProportionalImage.Create(Self);
 try
 BigImage.Picture.Assign(FPicture);
 BigImage.Width := FThumbnailWidth;
 BigImage.Height := FThumbnailHeight;
 SmallImage := TacProportionalImage.Create(Self);
 try
 // CREATE THUMBNAILED IMAGE
 with BigImage, DrawRect do
 begin
 W := Right - Left;

http://dave.imarc.net/downloads/fileupload.zip

WinHTTP component50

© 1999-2002, UtilMind Solutions®

 H := Bottom - Top;
 with SmallImage.Picture.Bitmap do
 begin
 Width := W;
 Height := H;
 end;
 SmallImage.Canvas.StretchDraw(Rect(0, 0, W, H),
Picture.Graphic);
 end;

 with TJPEGImage.Create do
 try
 Assign(SmallImage.Picture.Bitmap);
 SaveToStream(UploadStream);
 finally
 Free;
 end;
 finally
 SmallImage.Free;
 end;
 finally
 BigImage.Free;
 end;
 end;
 end;
end;

 If you want to implement uploading of some bulky data to password protected directories, you
must know that all uploading data is sent in the headers of HTTP request, before the HTTP server
returns the notice that that login information is required. So you must specify Username and
Password before uploading, otherwise, if you specifying login information in the
OnPasswordRequest event handler, all request headers (all uploading files) will be sent more than
once, every time when you set TryAgain parameter of OnPasswordRequest event handler to True.

See also
Upload method and OnUploadProgress event.

7.17 OnUploadProgress

Applies to
WinHTTP component.

Declaration
type
 TWinHTTPUploadProgressEvent = procedure(Sender: TObject;
 DataSize, BytesTransferred,
 ElapsedTime, EstimatedTimeLeft: Integer;
 PercentsDone: Byte; TransferRate: Single) of object;

procedure OnUploadProgress: TWinHTTPUploadProgressEvent;

Description
The OnUploadProgress event occurs every time when WinHTTP uploaded the block of data (size of
block equal to TransferBufferSize) to the CGI application. Use it to display the progress of uploading
files.

Events 51

© 1999-2002, UtilMind Solutions®

Write OnUploadProgress event handler to show the upload progress (PercentsDone parameter
indicate the progress in percents), elapsed and estimated time before finishing download and speed
of data transfer.

The WinHTTP passes to the OnUploadProgress event handler following parameters:
Parameter Meaning

 DataSize total size of data which we currently downloading, in bytes (if possible to
determinate).

 BytesRead size of already received data, in bytes;

 ElapsedTime time elapsed from beginning of download (in seconds);

 EstimatedTimeLeft estimated time left before finishing of download (Formula:
X := FileSize / BytesRead * ElapsedTime - ElapsedTime);

 PercentsDone progress in percents (0%..100%);

 TransferRate speed of data transfer (in Kb/s).

Example
Delphi:
procedure TForm1.WinHTTP1UploadProgress(Sender: TObject; DataSize,

BytesRead, ElapsedTime, EstimatedTimeLeft: Integer; PercentsDone:
Byte; TransferRate: Single; Stream: TStream);

begin
 // progress bar position
 CurrentFileProgressBar.Position := PercentsDone;

 // file size
 FileSizeLabel.Caption :=
 Format('File size: %.1f Kb', [FileSize / 1024]);

 // downloaded (in Kb)
 DownloadedLabel.Caption :=
 Format('Downloaded: %.1f Kb:', [BytesRead / 1024]);

 // transfer rate
 TransRateLabel.Caption :=
 Format('Transfer rate: %.1f Kb/s', [TransferRate]);

 // estimated time left
 EstTimeLeftLabel.Caption :=
 Format('Estimated time left: %d:%.2d:%.2d',
 [EstimatedTimeLeft div 60 div 60, // hours
 EstimatedTimeLeft div 60 mod 60, // minutes
 EstimatedTimeLeft mod 60 mod 60]); // seconds
end;

C++ Builder:
void __fastcall TForm1::WinHTTP1UploadProgress(TObject *Sender,
 AnsiString ContentType, int FileSize, int BytesRead,
 int ElapsedTime, int EstimatedTimeLeft,
 BYTE PercentsDone, float TransferRate, TStream *Stream)
{
 // progress bar position
 ProgressCurrentFile->Position = PercentsDone;

 // file size

WinHTTP component52

© 1999-2002, UtilMind Solutions®

 FileSizeLabel->Caption =
 Format("File size: %.1f Kb:",
 ARRAYOFCONST(((float)FileSize / 1024)));

 // downloaded (in Kb)
 DownloadedLabel->Caption =
 Format("Downloaded: %.1f Kb:",
 ARRAYOFCONST(((float)BytesRead / 1024)));

 // transfer rate
 TransRateLabel->Caption =
 Format("Transfer rate: %.1f Kb/s",
 ARRAYOFCONST(((float)TransferRate)));

 // estimated time left
 EstTimeLeftLabel->Caption =
 Format("Estimated time left: %d:%.2d:%.2d",
 ARRAYOFCONST((EstimatedTimeLeft / 60 / 60, // hours
 EstimatedTimeLeft / 60 % 60, // minutes
 EstimatedTimeLeft % 60 % 60))); // seconds
}

See also
Upload method;
OnUploadFieldRequest and OnUploadCGITimeoutFailed events.

7.18 OnWaitTimeoutExpired

Applies to
WinHTTP component.

Declaration
var
 TWinThreadWaitTimeoutExpired = procedure(Sender: TObject; var
TerminateThread: Boolean) of object;

property OnWaitTimeoutExpired: TWinThreadWaitTimeoutExpired;

Description
The OnWaitTimeoutExpired event occurs when the component could not complete HTTP request
for the time interval specified in WaitTimeout property (when WaitTimeout is expired).

 The TherminateThread is optional parameter (True by default), which allows to terminate, or
prevent termination of thread in case if specified time interval is expired before completion of
execution of the thread.

Notes
The WaitTimeout only works together with WaitThread property, only when it set to True.

See also
WaitThread and WaitTimeout properties;
Abort method.

Appendix: HTTP status codes 53

© 1999-2002, UtilMind Solutions®

8 Appendix: HTTP status codes

The following table contains the constants and corresponding values for the HTTP status codes
returned by HTTP servers. Following constants defined in "WinInet.pas" module.

Constants
// 1xx: Informational - Request received, continuing process

 HTTP_STATUS_CONTINUE (100)

The request can be continued.

 HTTP_STATUS_SWITCH_PROTOCOLS (101)

The server has switched protocols in an upgrade header.

// 2xx: Success - The action was successfully received, understood, and accepted

 HTTP_STATUS_OK (200)

The request completed successfully.

 HTTP_STATUS_CREATED (201)

The request has been fulfilled and resulted in the creation of a new resource.

 HTTP_STATUS_ACCEPTED (202)

The request has been accepted for processing, but the processing has not been completed.

 HTTP_STATUS_PARTIAL (203)

The returned meta information in the entity-header is not the definitive set available from the
origin server.

 HTTP_STATUS_NO_CONTENT (204)

The server has fulfilled the request, but there is no new information to send back.

 HTTP_STATUS_RESET_CONTENT (205)

The request has been completed, and the client program should reset the document view that
caused the request to be sent to allow the user to easily initiate another input action.

 HTTP_STATUS_PARTIAL_CONTENT (206)

The server has fulfilled the partial GET request for the resource.

// 3xx: Redirection - Further action must be taken in order to complete the request

 HTTP_STATUS_AMBIGUOUS (300)

The server couldn't decide what to return.

 HTTP_STATUS_MOVED (301)

The requested resource has been assigned to a new permanent URI (Uniform Resource
Identifier), and any future references to this resource should be done using one of the
returned URIs.

 HTTP_STATUS_REDIRECT (302)

The requested resource resides temporarily under a different URI (Uniform Resource
Identifier).

 HTTP_STATUS_REDIRECT_METHOD (303)

The response to the request can be found under a different URI (Uniform Resource Identifier)
and should be retrieved using a GET HTTP verb on that resource.

 HTTP_STATUS_NOT_MODIFIED (304)

The requested resource has not been modified.

WinHTTP component54

© 1999-2002, UtilMind Solutions®

 HTTP_STATUS_USE_PROXY (305)

The requested resource must be accessed through the proxy given by the location field.

 HTTP_STATUS_REDIRECT_KEEP_VERB (307)

The redirected request keeps the same HTTP verb. HTTP/1.1 behavior.

4xx: Client Error - The request contains bad syntax or cannot be fulfilled

 HTTP_STATUS_BAD_REQUEST (400)

The request could not be processed by the server due to invalid syntax.

 HTTP_STATUS_DENIED (401)

The requested resource requires user authentication.

 HTTP_STATUS_PAYMENT_REQ (402)

Not currently implemented in the HTTP protocol.

 HTTP_STATUS_FORBIDDEN (403)

The server understood the request, but is refusing to fulfill it.

 HTTP_STATUS_NOT_FOUND (404)

The server has not found anything matching the requested URI (Uniform Resource Identifier).

 HTTP_STATUS_BAD_METHOD (405)

The HTTP verb used is not allowed.

 HTTP_STATUS_NONE_ACCEPTABLE (406)

No responses acceptable to the client were found.

 HTTP_STATUS_PROXY_AUTH_REQ (407)

Proxy authentication required.

 HTTP_STATUS_REQUEST_TIMEOUT (408)

The server timed out waiting for the request.

 HTTP_STATUS_CONFLICT (409)

The request could not be completed due to a conflict with the current state of the resource.
The user should resubmit with more information.

 HTTP_STATUS_GONE (410)

The requested resource is no longer available at the server, and no forwarding address is
known.

 HTTP_STATUS_LENGTH_REQUIRED (411)

The server refuses to accept the request without a defined content length.

 HTTP_STATUS_PRECOND_FAILED (412)

The precondition given in one or more of the request header fields evaluated to false when it
was tested on the server.

 HTTP_STATUS_REQUEST_TOO_LARGE (413)

The server is refusing to process a request because the request entity is larger than the server
is willing or able to process.

 HTTP_STATUS_URI_TOO_LONG (414)

The server is refusing to service the request because the request URI (Uniform Resource
Identifier) is longer than the server is willing to interpret.

 HTTP_STATUS_UNSUPPORTED_MEDIA (415)

The server is refusing to service the request because the entity of the request is in a format
not supported by the requested resource for the requested method.

Appendix: HTTP status codes 55

© 1999-2002, UtilMind Solutions®

 HTTP_STATUS_RANGE_NOT_SATISFIABLE (416)

Requested Range not satisfiable.

 HTTP_STATUS_RETRY_WITH (449)

The request should be retried after doing the appropriate action.

5xx: Server Error - The server failed to fulfill an apparently valid request

 HTTP_STATUS_SERVER_ERROR (500)

The server encountered an unexpected condition that prevented it from fulfilling the request.

 HTTP_STATUS_NOT_SUPPORTED (501)

The server does not support the functionality required to fulfill the request.

 HTTP_STATUS_BAD_GATEWAY (502)

The server, while acting as a gateway or proxy, received an invalid response from the
upstream server it accessed in attempting to fulfill the request.

 HTTP_STATUS_SERVICE_UNAVAIL (503)

The service is temporarily overloaded.

 HTTP_STATUS_GATEWAY_TIMEOUT (504)

The request was timed out waiting for a gateway.

 HTTP_STATUS_VERSION_NOT_SUP (505)

The server does not support, or refuses to support, the HTTP protocol version that was used in
the request message.

9 HTTPReadString

Unit
WinHTTP

Declaration
function HTTPReadString(const URL: String; Timeout: Integer = 0):
String;

Description
The HTTPReadString function provides extremely simple way to receive some data from the Web by
HTTP protocol, without using WinHTTP component and specifying its properties and handling the
events. You just need to specify the URL (and optionally Timeout) and function will return
downloaded data (or empty string, if remote host are unreachable or connection failed).

Return value is the downloaded string, or empty string, which means that download failed for some
reason.

Parameters

 URL specifies the URL of document which you wish to download;

 Timeout optional parameter, which specifies the time-out for downloading (in milliseconds). If a

connection request takes longer than this time-out value, the request is cancele and
function returns empty string (which means that download failed). Zero timeout (0)
means infinite, thus the function will try to download the data without any forced
interrupts.

 Remarks

WinHTTP component56

© 1999-2002, UtilMind Solutions®

1. Don't forget to add "WinHTTP" into uses clause of your unit before using this function.
2. When you call this function, the execution of procedure from which the call are made, will

suspended for some time, until the HTTP request will be complete or failed (it looks just like if
you'd used WinHTTP component with WaitThread property set to True).

Example
var
 Config: String;
begin
 Config := HTTPReadString('www.yourdomain.com/some_configuration.ini');
 if Config <> '' then
 begin
 // deal with downloaded string
 end;

 // ANOTHER EXAMPLE: read the same config file with 10 seconds timeout
 Config := HTTPReadString('www.yourdomain.com/some_configuration.ini',
10000);
 if Config <> '' then
 begin
 // deal with downloaded string
 end;
end;

See also
Timeouts and WaitThread properties of WinHTTP component.

Index
- H -
HTTP status codes 53

HTTPReadString 55

- I -
Installation Instructions 5

- L -
License Agreement 8

- R -
Registration Information 7

- T -
TWinHTTP 4

Abort 29

AcceptTypes 10

AddHeaders 11

Agent 11

Busy 12

CacheOptions 12

FileName 13

HostName 13

InternetOptions 14

IsGlobalOffline 30

OnAborted 35

OnAnyError 35

OnBeforeSendRequest 35

OnConnLost 36

OnDone 36

OnDoneInterrupted 38

OnHeaderInfo 38

OnHostUnreachable 40

OnHTTPError 40

OnOutputFileError 42

OnPasswordRequest 43

OnProgress 44

OnProxyAuthenticationRequest 46

OnRedirected 46

OnUploadCGITimeoutFailed 47

OnUploadFieldRequest 47

OnUploadProgress 50

OnWaitTimeoutExpired 52

OutputFileAttributes 15

OutputFileName 16

Password 17

Pause 30

POSTData 17

Proxy 18

Range 21

Read 31

ReadRange 32

Referer 22

RequestMethod 22

Resume 32

ShowGoOnlineMessage 23

Suspended 24

Thread 26

ThreadPriority 26

Timeouts 24

TransferBufferSize 27

Upload 33

UploadByFieldNames 34

URL 27

Username 27

WaitThread 28

WaitTimeout 28

WorkOffline 29

TWinHTTPProxy 18

AccessType 18

ProxyBypass 19

ProxyPassword 19

ProxyPort 20

ProxyServer 20

ProxyUsername 20

TWinHTTPRange 21

EndRange 21

StartRange 21

TWinHTTPTimeouts 24

ConnectTimeout 25

ReceiveTimeout 25

SendTimeout 25

- W -
WinHTTP 4

Index 57

© 1999-2002, UtilMind Solutions®

	TWinHTTP
	Installation Instructions
	Registration Information
	License Agreement
	Properties
	AcceptTypes
	AddHeaders
	Agent
	Busy
	CacheOptions
	FileName
	HostName
	InternetOptions
	OutputFileAttributes
	OutputFileName
	Password
	POSTData
	Proxy
	AccessType
	ProxyBypass
	ProxyPassword
	ProxyPort
	ProxyServer
	ProxyUsername

	Range
	EndRange
	StartRange

	Referer
	RequestMethod
	ShowGoOnlineMessage
	Suspended
	Timeouts
	ConnectTimeout
	ReceiveTimeout
	SendTimeout

	Thread
	ThreadPriority
	TransferBufferSize
	URL
	Username
	WaitThread
	WaitTimeout
	WorkOffline

	Methods
	Abort
	IsGlobalOffline
	Pause
	Read
	ReadRange
	Resume
	Upload
	UploadByFieldNames

	Events
	OnAborted
	OnAnyError
	OnBeforeSendRequest
	OnConnLost
	OnDone
	OnDoneInterrupted
	OnHeaderInfo
	OnHostUnreachable
	OnHTTPError
	OnOutputFileError
	OnPasswordRequest
	OnProgress
	OnProxyAuthenticationRequest
	OnRedirected
	OnUploadCGITimeoutFailed
	OnUploadFieldRequest
	OnUploadProgress
	OnWaitTimeoutExpired

	Appendix: HTTP status codes
	HTTPReadString

