
Table of Contents

Foreword 0

Part I Components Overview 3

Part II Installation Instructions 3

Part III Registration Information 4

Part IV License Agreement 5

Part V IESniffer component 7

... 71 TIESniffer

... 92 Properties

.. 9Active

.. 10FormAutoFill

.. 10IEList

.. 11MonitorInterval

.. 11SearchBar

.. 12SearchRedirect

.. 13SniffWithHTTPPrefixOnly

.. 13URLs

... 133 Methods

.. 13AddBrowser

.. 14ClearMarks

.. 15CloseBrowsers

.. 15MarkText

.. 16ReplaceText

.. 17Refresh

... 174 Events

.. 17OnURLChange

.. 18OnWBBeforeNavigate2

.. 19OnWBCommandStateChange

.. 20OnWBDocumentComplete

.. 21OnWBDownloadBegin

.. 21OnWBDownloadComplete

.. 23OnWBFileDownload

.. 23OnWBFullScreen

.. 23OnWBMenuBar

.. 24OnWBNavigateComplete2

.. 25OnWBNewWindow2

.. 25OnWBProgressChange

.. 26OnWBPropertyChange

.. 26OnWBQuit

.. 27OnWBStatusBar

.. 27OnWBStatusTextChange

.. 28OnWBTheaterMode

.. 28OnWBTitleChange

IContents

I

© 2002-2003, UtilMind Solutions®

.. 28OnWBToolbar

.. 29OnWBVisible

.. 29OnWindowLoad

.. 31OnWindowUnload

Part VI IESnifferAutoFillUserInfo component 31

... 311 TIESnifferAutoFillUserInfo

... 322 Properties

.. 32AutoFill

.. 32AutoHighlight

.. 32CustomFields

.. 33Fields

.. 34FillTokens

.. 35HighlightColor

.. 35HighlightTextColor

.. 35RegistrySaver

... 363 Methods

.. 36Fill

.. 37Save

Index 38

IESniffer componentII

© 2002-2003, UtilMind Solutions®

Components Overview 3

© 2002-2003, UtilMind Solutions®

1 Components Overview

IESniffer - monitors all running instances of Internet Explorer (or just some certain browser
window(s)), sniffs the URL address from address line and gives an access to all their properties,
methods and events (without implementing/installing ANY Browser Helper Objects). The
component can work either in stand-alone Delphi/BCB application or can be put to Explorer
Toolbar written with Delphi/BCB. The IESniffer allows:
· list the URLs which currently are available in the address lines of each browser window, and to

be notified when the address changes;
· detect when new Internet Explorer window appears and when user close the window;

· hook each event of the Internet Explorer, modify its properties and call their methods, just like
you are using usual TWebBrowser component;

· retrieve and modify the content of each page (its text, tags, links, images etc), for example you
may highlight some text, remove or change the text, tags etc;

· automatically fill the Web forms;
· redirect navigation to different URL when some keywords are detected in the address line;

· automatically redirect searches from default MSN to another specified search engine (it works
when user enters search terms right in address line without specifying correct address);

· prevent popup windows to be opened (documentation deminstrates an example how to
eliminate ALL popup windows), and so on…

IESnifferAutoFillUserInfo - the "plug-in" for IESniffer component, used to fill the Web forms
with specified information.

IESniffer component (http://www.appcontrols.com)
Copyright © 2002-2004, UtilMind Solutions. All Rights Reserved.
Documentation created with Help&Manual, best authoring tool.

2 Installation Instructions

to Delphi 5
 1. Create "..\Lib\IESniffer" directory.
 2. Unzip files and copy them to "..\Lib\IESniffer".
 3. Start Delphi 5 IDE.
 4. Open "IESnifferD5.dpk" file.
 5. Install package to the components palette ("Install" button).

to Delphi 6
 1. Create "..\Lib\IESniffer" directory.
 2. Unzip files and copy them to "..\Lib\IESniffer".
 3. Start Delphi 6 IDE.
 4. Open "IESnifferD6.dpk" file.
 5. Install package to the components palette ("Install" button).

to Delphi 7
 1. Create "..\Lib\IESniffer" directory.
 2. Unzip files and copy them to "..\Lib\IESniffer".
 3. Start Delphi 7 IDE.
 4. Open "IESnifferD7.dpk" file.

http://www.appcontrols.com
http://www.utilmind.com
http://www.ec-software.com

IESniffer component4

© 2002-2003, UtilMind Solutions®

 5. Install package to the components palette ("Install" button).

to Delphi 2005
 1. Create "..\Lib\IESniffer" directory.
 2. Unzip files and copy them to "BDS\3.0\Lib\IESniffer".
 3. Start Delphi 2005 IDE.
 4. Open "IESnifferD2005.dpk" file.
 5. Install package to the components palette (right-click on "IESnifferD2005.bpl" node in the Project
Manager and select "Install" menu item).

to C++ Builder 5
 1. Create "..\Lib\IESniffer" directory.
 2. Unzip files and copy them to "..\Lib\IESniffer".
 3. Start C++ Builder 5 IDE.
 4. Open "IESnifferCB5.bpk" file.
 5. Install package to the components palette ("Install" button).

to C++ Builder 6
 1. Create "..\Lib\IESniffer" directory.
 2. Unzip files and copy them to "..\Lib\IESniffer".
 3. Start C++ Builder 6 IDE.
 4. Open "IESnifferCB6.bpk" file.
 5. Install package to the components palette ("Install" button).

Source Code
 1. Uninstall / delete all previous (trial) instances of IESniffer.
 2. Create "..\Lib\IESniffer" directory.
 3. Unzip files from "Sources" directory and copy them to "..\Lib\IESniffer".
 4. Run Delphi IDE.
 5. Select "Component \ Install..." menu item.
 6. Press "Add" button and select "IESniffer.pas" file.
 7. Rebuild library.

Notes for C++ Builder users

 When you will build the project with IESniffer, you may get following compiler error:
[C++ Error] SHDocVw.hpp(893): E2293) expected, at the following line:
/* TWinControl.CreateParented */ inline __fastcall TWebBrowser(HWND ParentWindow)
: Olectrls::TOleControl(ParentWindow) { }

Please manually edit the SHDocVw.hpp and change this line to
/* TWinControl.CreateParented */ inline __fastcall TWebBrowser(HANDLE

ParentWindow) : Olectrls::TOleControl(ParentWindow) { }

IESniffer (http://www.appcontrols.com)
Copyright © 2002-2004, UtilMind Solutions. All Rights Reserved.
Documentation created with Help&Manual, best authoring tool.

3 Registration Information

IESniffer is SHAREWARE. This means that you can try it out for free, but if you like it and want to use
it you have to register it with the author. Before continue read and accept license agreement please.

http://www.appcontrols.com
http://www.utilmind.com
http://www.ec-software.com

Registration Information 5

© 2002-2003, UtilMind Solutions®

The only difference between the unregistered and registered versions is that the registered one has
not message box with remind to register and works without Delphi (C++ Builder) running. You can
also purchase the source code, if you would like to have it, and be able to compile or modify the
IESniffer on any 32bit version of Delphi or C++ Builder (higher than Delphi 5 or BCB 5).

If you would like to use the IESniffer and receive full, unrestricted version, priority support or even
source code — you have to purchase proper license.

All prices are in European currency (Euros). Registering entitles you to unlimited support via E-Mail,
minor version updates indefinitely and major version updates for 6 month from date of purchase. You
can use registered components in any number of projects, there is no deployment and royaltee fees.

Registration types:

Full, unrestricted version without source code:
Single user license:
· https://secure.element5.com/register.html?productid=190695 - EUR 29,95
Site license:

· https://secure.element5.com/register.html?productid=190696 - EUR 79,95

Full version including 100% Source Code:
Single user license:
· https://secure.element5.com/register.html?productid=190697 - EUR 59,95
Site license:

· https://secure.element5.com/register.html?productid=190698 - EUR 179,95

Comments
1. Site license covers a single organisation in one location (building complex). If you buy a site

license, you may use the software in unlimited number of your company's computers withing this
area. Site license is very cost-effective if you have many computers (many software developers).

See license agreement for more details.

IESniffer (http://www.appcontrols.com)
Copyright © 2002-2004, UtilMind Solutions. All Rights Reserved.
Documentation created with Help&Manual, best authoring tool.

4 License Agreement

Copyright
The IESniffer (software) is Copyright © 2002-2004, by Utilmind Solutions® (Utilmind). All rights
reserved.
The authors - Utilmind Solutions® and Aleksey Kuznetsov (founder of Utilmind), exclusively own all
copyrights to the Advanced Application Controls (AppControls) and all other products distributed by
Utilmind Solutions®.

Liability disclaimer
THIS SOFTWARE IS DISTRIBUTED "AS IS" AND WITHOUT WARRANTIES AS TO
PERFORMANCE OF MERCHANTABILITY OR ANY OTHER WARRANTIES WHETHER
EXPRESSED OR IMPLIED. YOU USE IT AT YOUR OWN RISK. THE AUTHOR WILL NOT BE
LIABLE FOR DATA LOSS, DAMAGES, LOSS OF PROFITS OR ANY OTHER KIND OF LOSS

http://www.appcontrols.com
http://www.utilmind.com
http://www.ec-software.com

IESniffer component6

© 2002-2003, UtilMind Solutions®

WHILE USING OR MISUSING THIS SOFTWARE.

Restrictions
You may not attempt to reverse compile, modify, translate or disassemble the software in whole or in
part. You may not remove or modify any copyright notice or the method by which it may be invoked.

Operating license
Unregistered version
You may distribute the unregistered version of software freely, provided that all files are included and
remain unmodified and that no extra files have been added to the package. You may not ask any
money for the distribution. You may use the unregistered version of software free of charge for
testing purposes, but if you want to use it for other purposes than testing - you have to register it
with the author.

Registered version (single user license)
Once you have registered, you will receive a personal registered copy via email and login
information to access your personal area at AppControls.com. This copy may not be copied or lend.
You have the non-exclusive right to use registered version of the software only by a single person,
on a single computer at a time. You may physically transfer the software from one computer to
another, provided that the software is used only by a single person, on a single computer at a time.
In group projects where multiple persons will use the software, you must purchase an individual
license for each member of the group or purchase site license. Use over a "local area network"
(within the same locale) is permitted provided that the software is used only by a single person, on a
single computer at a time. Use over a "wide area network" (outside the same locale) is strictly
prohibited under any and all circumstances.

Registered version (site/team license)
Once you have registered, you will receive a personal registered copy via email and login
information to access your personal area at AppControls.com. This copy may not be copied or lend.
You have the non-exclusive right to use and transfer registered version of software on any number
of computers by your company or your team only in one location (building complex). If you purchase
a site license, you may use the program in an unlimited number of your company's computers
within this area.

Registered version (Educational site license)
Once you have registered, you will receive a personal registered copy via email and login
information to access your personal area at AppControls.com. This copy may not be copied or lend.
You have the non-exclusive right to use and transfer registered version of software on any number
of computers by your educational organisation (school/college/university etc) in one location
(building complex). If you buy a educational site license, you may use the program in an unlimited
number of your edicational organisation's computers within this area.

Registered version (World-wide license)
Once you have registered, you will receive a personal registered copy via email and login
information to access your personal area at AppControls.com. This copy may not be copied or lend.
You have the non-exclusive right to use and transfer registered version of software on any number
of computers by your company or your team world-wide. If your company has many branches even
with thouthands of computers, world wide license covers them all.

Notes (clarification)
"Single-user license" means "single-developer license". "Site license" means that it can be used by
any number of software developers within your company.
You can use purchased components in ANY number of your projects and deploy the "end-user"

License Agreement 7

© 2002-2003, UtilMind Solutions®

software to ANY number of your users/customers without any additional royalty fees. However you
are not permitted to distribute the component itself (the source code or .dcu files of components).

Back-up and transfer
You may make one copy of the software solely for "back-up" purposes, as prescribed by
international copyright laws. You must reproduce and include the copyright notice on the back-up
copy.

Terms
This license is effective until terminated. You may terminate it by destroying the program, the
documentation and copies thereof. This license will also terminate if you fail to comply with any
terms or conditions of this agreement. You agree upon such termination to destroy all copies of the
program and of the documentation, or return them to author.

Other rights and restrictions
All other rights and restrictions not specifically granted in this license are reserved by authors.

IESniffer (http://www.appcontrols.com)
Copyright © 2002-2004, UtilMind Solutions. All Rights Reserved.
Documentation created with Help&Manual, best authoring tool.

5 IESniffer component

5.1 TIESniffer

Overview
The IESniffer monitors all running instances of Internet Explorer (or just some certain browser
window(s)), sniffs the URL address from address line and gives an access to all their properties,
methods and events (without implementing/installing ANY Browser Helper Objects). The
component can work either in stand-alone Delphi/BCB application or can be put to Explorer Toolbar
written with Delphi/BCB. The component allows:
· list the URLs which currently are available in the address lines of each browser window, and to be

notified when the address changes;

· detect when new Internet Explorer window appears and when user close the window;
· hook each event of the Internet Explorer, modify its properties and call their methods, just like you

are using usual TWebBrowser component;
· retrieve and modify the content of each page (its text, tags, links, images etc), for example you

may highlight some text, remove or change the text, tags etc;
· automatically fill the Web forms (with IESnifferAutoFillUserInfo component);

· redirect navigation to different URL when some keywords are detected in the address line;
· automatically redirect searches from default MSN to another specified search engine (it works

when user enters search terms right in address line without specifying correct address);
· prevent popup windows to be opened, and so on…

 This component available only in Delphi/BCB 5 and higher versions and works with Internet
Explorer 4 and higher (unfortunately IWebBrowser2 and DWebBrowserEvents2 interfaces does not
supported in earlier versions).

How does it works?

http://www.appcontrols.com
http://www.utilmind.com
http://www.ec-software.com

IESniffer component8

© 2002-2003, UtilMind Solutions®

The IE Sniffer contantly monitors the shell for new instances of Internet or Windows explorer (with
the interval specified in MonitorInterval property). When it detects new instance of Explorer, it
triggers OnWindowLoad event, adds the detected instance to the internal list, and starts hooking all
events of that browser, by connecting to its IWebBrowser2 interface (Note: the component does
NOT hooks events of Windows Explorer, you can receive events only from IE). When user close
the Explorer window, it triggers OnWBQuit (window is about to be closed), then the
OnWindowUnload event (window are closed and all its handles already destroyed).

How to use?
First drop the component onto your form and specify the interval between checking for new Explorer
windows to MonitorInterval property. If you just want to detect when the new URL appears in some
browser window, and to be notified when the address changes — write OnURLChange event
handler. To be notified when the new Explorer window opens — use OnWindowLoad event, to take
some specific actions when user closes the window — write OnWindowUnload event handler, or
use OnWBQuit event instead when the Internet Explorer window is only about to be closed. If you
want to detect only windows with "http" prefix (with content received by HTTP or HTTPS protocols —
set SniffWithHTTPrefixOnly property to True). Also you can always receive the full list of URLs which
currently are available in all Explorer windows by reading the URLs property.

If you don't need to hook events from ALL instances of Internet Explorer and just want to receive
events from some certain browser window — set Active property to False (component will not detect
IE windows automatically), and add some certain browser window for monitoring with AddBrowser
method.

If you want to perform some more complicated tasks (like grabbing the content of browser window,
or modifying it, or something else that can be done with browser), you should access its
IWebBrowser2 interface. To access it, you can use the numerous events (each event passes the
pointer to IWebBrowser2 instance), or use IEList property to enumerate each instance of Internet
Explorer and play with their properties and methods. If you wish to replace or highlight some text
when the page is downloaded — use MarkText or ReplaceText methods in the
OnWBDownloadComplete and OnWindowLoad event handlers.

Here is simple example which demonstrates how to highlight some word on the downloaded HTML
document:
procedure TForm1.IESniffer1WBDownloadComplete(Sender: TObject;
 const URL: String; const Browser: IWebBrowser2);
begin
 IESniffer1.MarkText(Browser, 'Delphi', clBlack, clYellow);
end;

To clear the marks — use ClearMarks method:
procedure TForm1.ClearBtnClick(Sender: TObject);
begin
 IESniffer1.ClearMarks(Browser);
end;

If you wish to redirect the navigation to another URL when some keywords are detected in the
address line you can use following example:
procedure TBandForm.IESniffer1WBBeforeNavigate2(Sender: TObject;
 const URL: String; const Browser: IWebBrowser2; const pDisp:
IDispatch;
 var NewURL, Flags, TargetFrameName, PostData, Headers: OleVariant;
 var Cancel: WordBool);
begin
 if Pos('porn', LowerCase(URL)) <> 0 then
 begin

IESniffer component 9

© 2002-2003, UtilMind Solutions®

 Cancel := True;
 Browser.Navigate('http://www.disney.com', Flags, TargetFrameName,
PostData, Headers);
 end;
end;

Here is another example how to block all popup windows before they will be displayed. This is VERY
simple example, but it works and kills ALL popup windows (which don't have the toolbar):
procedure TBandForm.IESniffer1WBBeforeNavigate2(Sender: TObject;
 const URL: String; const Browser: IWebBrowser2; const pDisp:
IDispatch;
 var NewURL, Flags, TargetFrameName, PostData, Headers: OleVariant;
 var Cancel: WordBool);
begin
 Cancel := Browser.Toolbar = 0;
end;

Also if your popup killer software operates with "white" and "black" lists, you can additionally check
the URL parameter and if it contains some unwanted text (domain name or keyword), you can allow
or disallow the navigation accordingly.
Additionally, you can check the state of Ctrl key (like Google toolbar does) and always allow the
navigation when Ctrl key pressed.

Note for C++ Builder developers

 When you will build the project with IESniffer, you may get following compiler error:
[C++ Error] SHDocVw.hpp(893): E2293) expected, at the following line:
/* TWinControl.CreateParented */ inline __fastcall TWebBrowser(HWND ParentWindow)
: Olectrls::TOleControl(ParentWindow) { }

Please manually edit the SHDocVw.hpp and change this line to
/* TWinControl.CreateParented */ inline __fastcall TWebBrowser(HANDLE
ParentWindow) : Olectrls::TOleControl(ParentWindow) { }

Code example
In Delphi: http://www.appcontrols.com/demos/iesnifferdemo-delphi.zip
Compiled executable: http://www.appcontrols.com/download/exe/IESnifferDemo.exe

See also
IESnifferAutoFillUserInfo component.

5.2 Properties

5.2.1 Active

Applies to
IESniffer component.

Declaration
property Active: Boolean; // True by default

Description
The Active property controls whether the IESniffer is active to detect when the new instances of
Internet or Windows Explorer appears and disappears (when user opens and closes the Internet or
Windows Explorer windows).

Set Active property to True to enable the timer and check the shell for instances of Windows or
Internet Explorer, and to trigger OnWindowLoad event when new window appears and

http://www.appcontrols.com/demos/iesnifferdemo-delphi.zip
http://www.appcontrols.com/download/exe/IESnifferDemo.exe

IESniffer component10

© 2002-2003, UtilMind Solutions®

OnWindowUnload event when user closes the Explorer window.

 The detection are performed with intervals specified in MonitorInterval property.

 If you don't want to detect new instances of Internet Explorer on timer-based schedule, you can
just periodically call Refresh method and set Active to False.
The Refresh method detects each instance of Internet Explorer and adds it to the internal list.
Alternatively, if you don't need to operate with ALL instances of Explorer, you can use AddBrowser
method to add some certain intance of IE to the list and hook all its events.

See also
MonitorInterval property;
Refresh method.

5.2.2 FormAutoFill

Applies to
IESniffer component.

Declaration
property FormAutoFill: TIESnifferAutoFill;

Description
The FormAutoFill property used to specify custom component which allows to fill the Web forms.

Currently AppControls includes only one "form filler", IESnifferAutoFillUserInfo component. Drop
that component on your form together with IESniffer and point FormAutoFill to the
IESnifferAutoFillUserInfo component, if you want to automatically fill the Web forms with some basic
user details, like name, phone and address.

See also
IESnifferAutoFillUserInfo component.

5.2.3 IEList

Applies to
IESniffer component.

Declaration
property URLList: TacIEList;

Description
The URLList property is the list of containers for each detected instance of Explorer and their
IWebBrowser2 interface. This is just descendant of usual TList which contains TacIEHelper objects.
Here is how TacIEHelper object are introduced in IESniffer unit:
type
 TacIEHelper = class(TInterfacedObject, IUnknown, IDispatch)
 public
 property Browser: IWebBrowser2; // pointer to IWebBrowser2
interface
 property IsCompleted: Boolean; // whether ReadyState of Browser
is in READYSTATE_COMPLETE
 property URL: String read FURL; // current URL
 end;

Example (demonstrates how to fill some ListView with URLs and the page titles grabbed from each

IESniffer component 11

© 2002-2003, UtilMind Solutions®

Explorer window)
procedure TForm1.RefreshActiveInstancesInListView;
var
 I: Integer;
 ListItem: TListItem;
begin
 with ListView1, Items do
 try
 BeginUpdate;
 Clear;

 I := IESniffer1.IEList.Count;
 if I <> 0 then
 for I := 0 to I - 1 do
 with IESniffer1.IEList[I] do
 try
 ListItem := Items.Add;
 ListItem.Caption := URL;
 ListItem.SubItems.Add(Browser.LocationName);
 except
 end;
 finally
 EndUpdate;
 end;
end;

See also
SniffWithHTTPPrefixOnly property;
OnWindowLoad and OnWindowUnload events.

5.2.4 MonitorInterval

Applies to
IESniffer component.

Declaration
property MonitorInterval: Integer; // 2 seconds by default

Description
The MonitorInterval property specifies the time intervals, in units of milliseconds, between each
automatic call of Refresh method, which detects all new Internet Explorer windows.

 By default, the MonitorInterval set to 2000, that means that component is checking the shell for
new Explorer windows every 2 seconds. Feel free to increase or decrease this value, however it's not
recommended to decrease it less than 500 milliseconds, because it can lead to overloading of CPU.

See also
Active property.

5.2.5 SearchBar

Applies to
IESniffer component.

Declaration
type

IESniffer component12

© 2002-2003, UtilMind Solutions®

 TIESnifferSearchBar = class
 published
 property Enabled: Boolean stored False; // basically run-time only
 property URL: String;
 end;

property SearchBar: TIESnifferSearchBar;

Description
The SearchBar property used to specify custom URL for search panel (which visible at the left side
of Internet Explorer window, when user clicks "Search" button on the toolbar).

The Enabled is dynamic property which should be specified in run-time only! It determines whether
the search bar of Internet Explorer currently points to specified URL. Set Enabled to True at run-
time to specify the custom page for search bar, or set it to False, to restore default Windows Search
Assistant.

The URL property specifies the address to the web page which can be used instead of default
Windows Search Assistant. The custom page for search bar can looks like
http://www.google.com/ie.

See also
SearchRedirect property.

5.2.6 SearchRedirect

Applies to
IESniffer component.

Declaration
type
 TIESnifferSearchRedirect = class
 published
 property Enabled: Boolean;
 property RedirectURL: String;
 end;

property SearchRedirect: TIESnifferSearchRedirect;

Description
The SearchRedirect property used to specify the custom search engine for default searches (when
user specifies search terms in the address line instead of correct address).

The Enabled property specifies whether the IESniffer should redirect default searches to another
URL when it notice that browser is about to navigate somewhere like
"http://auto.search.msn.com/response.asp" and redirect the search to the URL specified in
RedirectURL property. Set Enabled to True, if you would like to use custom search engline, or leave
it False, if you're happy with default MSN engine (or some another search engine installed as
Browser Helper Object plug-in to IE).

The RedirectURL property specifies the URL to some custom search engline interface. The property
can contain string like "http://www.yoururl.com/%s", where %s will be automatically replaced by the
search terms typed by user in the address line.

See also
SearchBar property;

http://www.google.com/ie

IESniffer component 13

© 2002-2003, UtilMind Solutions®

IESnifferAutoFillUserInfo component.

5.2.7 SniffWithHTTPPrefixOnly

Applies to
IESniffer component.

Declaration
property SniffWithHTTPPrefixOnly: Boolean;

Description
The SniffWithHTTPPrefixOnly property controls whether the component should allow detect only
that windows of Internet Explorer which have 'http' prefix in its address line.

Set SniffWithHTTPPrefixOnly to True, to prevent hooking events when user surfing local intranet
pages or just use Windows Explorer instead of Internet, and want to retrieve content and events
only of those IE instances which currently displays the Web content received by HTTP or HTTPS
protocols. Otherwise, it will detect all addresses, event when user using Windows Explorer to
browse local directories (though, the component is unable to hook the events of Windows Explorer it
gives access only to IE).

See also
URLs property;
OnWindowLoad and OnWindowUnload events.

5.2.8 URLs

Applies to
IESniffer component.

Declaration
property URLs: TStrings;

Description
The URLs property used to sniff the text from address line of each instance of Internet Explorer (and
even Windows Explorer, if SniffWithHTTPPrefixOnly is False).

 When you reading URLs property, you don't need to call Refresh method, it's called before
sniffing

See also
SniffWithHTTPPrefixOnly property;
OnWindowLoad and OnWindowUnload events.

5.3 Methods

5.3.1 AddBrowser

Applies to
IESniffer component.

Declaration
function AddBrowser(Browser: IWebBrowser2): Boolean;

Description
The AddBrowser method used to add some certain Browser window to the internal list of

IESniffer component14

© 2002-2003, UtilMind Solutions®

component, and want to hook all events from that certain Browser.

The AddBrowser should be used only if Active property is False, so you don't want to detect the IE
windows automatically and just want to receive events from some certain Browser (for example if
you write the toolbar for Internet Explorer and want to receive events only from that browser inside
the IE window below your toolbar).

 Don't worry about adding one Browser instance several times, function will add only ONE
instance of browser, and will return False if the Browser already exists in the internal list of
component. Also you don't need to remove browser from list, component will handle this
automatically upon receiving OnWBQuit event (when IE window are closed).

 Note that if you want to operate with only ONE browser, do not call Refresh method (which
detects IE instances automatically and add all them to the internal list to hook their events), plus
make sure that Active property is False (so Refresh method will not called automatically on timer-
based schedule).

Example
procedure TBandForm.NavigateFromBand(const URL: String);
var
 _Url, X: OleVariant;
begin
 IESniffer1.AddBrowser(IE);
 _Url := Url; X := 0;
 IE.Navigate(Url, X, X, X, X);
end;

// another example how to add TWebBrowser to the internal list of
IESniffer
procedure TForm1.Button1Click(Sender: TObject);
begin
 IESniffer1.AddBrowser(WebBrowser1.ControlInterface);
end;

See also
Active and IEList properties;
Refresh method;
OnWindowLoad, OnWindowUnload, OnWBDownloadComplete and OnWBQuit events.

5.3.2 ClearMarks

Applies to
IESniffer component.

Declaration
function ClearMarks(Browser: IWebBrowser2; const MarkID: String =
'IESnifferMark'): Integer;

Description
The ClearMarks method clear the marks from keywords, which has been highlighted with MarkText
method.

When you call ClearMarks you just need to specify the Browser window and MarkID, which should
be the same which has been used when you called MarkText method.

Example

IESniffer component 15

© 2002-2003, UtilMind Solutions®

procedure TBandForm.SetHighlighter(Value: Boolean);
begin
 if Value then
 IESniffer1.MarkText(IE, FKeywords, clBlack, clYellow)
 else
 IESniffer1.ClearMarks(IE);
end;

See also
MarkText and ReplaceText methods.

5.3.3 CloseBrowsers

Applies to
IESniffer component.

Declaration
procedure CloseBrowsers(const URL: String = 'about:blank');

Description
The CloseBrowsers method closes ALL detected Internet Explorer windows which currently
displaying the location specified in URL parameter.

Calling of this method without any parameters will close all empty browser windows (with
about:blank text in the address line).

See also
MarkText and ReplaceText methods.

5.3.4 MarkText

Applies to
IESniffer component.

Declaration
function TIESniffer.MarkText(Browser: IWebBrowser2; const Text: String;
 FontColor: TColor = clBlack; BackgroundColor: TColor = clYellow;
 WholeWords: Boolean = False; MatchCase: Boolean = False; ScanFrames:
Boolean = True;
 const MarkID: String = 'IESnifferMark'): Integer; // returns number of
marked words

Description
The MarkText method searches for all occurences of the Text on the Web page and marks it with
specified foreground (FontColor parameter) and background (BackgroundColor parameter) colors.

Parameter Meaning

 Browser is the IWebBrowser2 interface with some text which should be marked.

 Text is the word or phrase which should be marked in the HTML document.

 FontColor specifies the font color to mark the found text.

 BackgroundColor specifies the background color to highlight the text.

 WholeWords whether the Text should match whole words only.

 MatchCase whether the Text should match case.

 ScanFrames whether to scan subframes of the web page (True by default).

IESniffer component16

© 2002-2003, UtilMind Solutions®

 MarkID identifier of marked text which must be used if you plan to clear marks.
(ClearMarks method can clear the marks from keywords with specified
MarkID).

Function returns the number of marked text fragments, or 0 if specified Text was not found on the
page.

Example
procedure TForm1.IESniffer1WBDownloadComplete(Sender: TObject;
 const URL: String; const Browser: IWebBrowser2);
begin
 // highlights AppControls keyword with yellow color
 IESniffer1.MarkText(Browser, 'AppControls', clBlack, clYellow);
end;

See also
ReplaceText method;
OnWindowLoad and OnWBDownloadComplete events.

5.3.5 ReplaceText

Applies to
IESniffer component.

Declaration
function TIESniffer.ReplaceText(Browser: IWebBrowser2; const OldText,
NewText: String;
 WholeWords: Boolean = False; MatchCase: Boolean = False; ScanFrames:
Boolean = True): Integer; // returns number of marked words

Description
The ReplaceText method searches for all occurences of the OldText on the Web page and replaces
it with NewText (can contain HTML tags).

Parameter Meaning

 Browser is the IWebBrowser2 interface with some text which should be marked.

 OldText is the word or phrase which should be replaced in the HTML document by

NewText.

 NewText the new word or phrase to which the OldText should be replaced to.

 WholeWords whether the Text should match whole words only.

 MatchCase whether the Text should match case.

 ScanFrames whether to scan subframes of the web page (True by default).

Function returns the number of marked text fragments, or 0 if specified Text was not found on the
page.

Example
procedure TForm1.IESniffer1WBDownloadComplete(Sender: TObject;
 const URL: String; const Browser: IWebBrowser2);
begin
 // change all occurances of word "Delphi" to bold "Delphi Rules!" ;-)
 IESniffer1.ReplaceText(Browser, 'Delphi', 'Delphi Rules!');
end;

IESniffer component 17

© 2002-2003, UtilMind Solutions®

See also
MarkText method;
OnWindowLoad and OnWBDownloadComplete events.

5.3.6 Refresh

Applies to
IESniffer component.

Declaration
procedure Refresh;

Description
The Refresh method refreshes the internal list of active Internet Explorer windows.

You can use Refresh method to detect new instances of Internet Explorer if you don't want to detect
it automatically on timer-based schedule (if Active property is False).

 Also, to refresh the list of active IE windows, you can simply read the URLs property, it will call
Refresh method automatically.

 Alternatively, if you don't need to operate with ALL instances of Explorer, you can use
AddBrowser method to add some certain intance of IE to the list and hook all its events.

See also
Active, MonitorInterval and URLs properties;
AddBrowser method;
OnWindowLoad and OnWindowUnload events.

5.4 Events

5.4.1 OnURLChange

Applies to
IESniffer component.

Declaration
type
 TIESnifferEvent = procedure(Sender: TObject; const URL: String; const
Browser: IWebBrowser2) of object;

property OnURLChange: TIESnifferEvent;

Description
The OnURLChange event occurs when the URL in the address line of Explorer changes.

Use OnURLChange event to be notified when user viewing the content from some particular
location and grab that URL address from certain Browser.

 Normally the OnURLChange event occurs at once after detecting the new instance of Internet
Explorer (after OnWindowLoad), to notify your application about new URL address, and when the
user navigates not another location (before OnWBTitleChange and OnWBNavigateComplete2
occur, if the URL is different than before).

See also

IESniffer component18

© 2002-2003, UtilMind Solutions®

SniffWithHTTPPrefixOnly property;
OnWindowLoad, OnWBTitleChange, OnWBBeforeNavigate2, OnWBNavigateComplete2,
OnWBDownloadComplete and OnWBDocumentComplete events.

5.4.2 OnWBBeforeNavigate2

Applies to
IESniffer component.

Declaration
type
 TIEWebBrowserBeforeNavigate2 = procedure(Sender: TObject; const URL:
String; const Browser: IWebBrowser2;
 const pDisp: IDispatch; var NewURL: OleVariant; var Flags:
OleVariant;
 var TargetFrameName: OleVariant; var PostData: OleVariant;
 var Headers: OleVariant; var Cancel: WordBool) of object;

property OnWBBeforeNavigate2: TIEWebBrowserBeforeNavigate2;

Description
The OnWBBeforeNavigate2 event occurs immediately before some instance of Internet Explorer
navigates to a new resource.

Write an OnWBBeforeNavigate2 event handler to redirect or cancel a change to a different URL.
This event may occur as the result of a call to the Navigate or Navigate2 method of Browser control,
or the user clicking a link.

The URL parameter is the current location shown in the address line of browser window.

Browser is the pointer to IWebBrowser2 control which performs the current operation (you can use
its properties and methods inside the event handler).

pDisp is the Automation interface of the Web browser control specified by Browser.

NewURL is the Uniform Resource Locator of the resource the Web browser is looking up. Change
this value to redirect the navigation operation to a different resource.

Flags is not currently used.

TargetFrameName is the name of the frame in which the resource will be displayed, or NULL if the
resource should not be displayed in a named frame. Change this value to change where the
resource is displayed. See the Navigate method for a list of possible values.

PostData contains the data sent to the server when the underlying operation is an HTTP post
message. The event handler can change this value before it is sent to the target URL. The PostData
can be extracted to normal string using following code:
function PostDataToStr(PostData: WideString): String;
begin
 SetLength(Result, Length(PostData) shl 1 - 1); // -1 tailing #0
 Move(PostData[1], Result[1], Length(Result));
end;

Headers contains any headers sent to the servers when the URL represents an HTTP message.
HTTP headers specify such things as the intended action required of the server, the type of data,
and so on. (See TWebRequest object, whose properties represent many of the more common
headers). The event handler can change this value before it is sent to the target URL.

Cancel determines whether the Web browser looks up the specified resource after the event

IESniffer component 19

© 2002-2003, UtilMind Solutions®

handler exits. Change Cancel to True to cancel the navigation operation.

Example

// demonstrates how to redirect navigation to another URL
procedure TBandForm.acIESniffer1WBBeforeNavigate2(Sender: TObject;
 const URL: String; const Browser: IWebBrowser2; const pDisp:
IDispatch;
 var NewURL, Flags, TargetFrameName, PostData, Headers: OleVariant;
 var Cancel: WordBool);
begin
 if Pos('porn', LowerCase(NewURL)) <> 0 then
 begin
 Cancel := True;
 Browser.Navigate('http://www.disney.com', Flags, TargetFrameName,
PostData, Headers);
 end;
end;

See also
OnWBNavigateComplete2 event.

5.4.3 OnWBCommandStateChange

Applies to
IESniffer component.

Declaration
type
 TIEWebBrowserCommandStateChange = procedure(Sender: TObject; const
URL: String; const Browser: IWebBrowser2;
 Command: Integer; Enable: WordBool) of object;

property OnWBCommandStateChange: TIEWebBrowserCommandStateChange;

Description
The OnWBCommandStateChange event occurs when the ability to execute certain IWebBrowser2
methods changes.

Write an OnWBCommandStateChange to update any controls in the application whose state
depends on the ability to execute the Web browser's methods.

Browser is the Web browser control whose capabilities have changed.

Command indicates what has changed. The following table lists the possible values:

 Constant Value Meaning

 CSC_UPDATECOMMANDS -1 Any change not covered by the other constants. The

application must check the properties of the Web
browser to update its controls. For example, the event
handler might check the Busy property to update a Stop
button.

 CSC_NAVIGATEFORWARD 1 The history list changed the ability of the GoForward

method to navigate to a new URL. The Enable parameter
indicates whether GoForward now navigates to a new
URL (True), or not (False).

IESniffer component20

© 2002-2003, UtilMind Solutions®

 CSC_NAVIGATEBACK 2 The history list changed the ability of the GoBack method
to navigate to a new URL. The Enable parameter
indicates whether GoBack now navigates to a new URL
(True), or not (False).

Enable indicates whether the CSC_NAVIGATEFORWARD or CSC_NAVIGATEBACK commands
should now be enabled (True), or not (False).

See also
OnWBPropertyChange and OnWBProgressChange events.

5.4.4 OnWBDocumentComplete

Applies to
IESniffer component.

Declaration
type
 TIEWebBrowserDocumentComplete = procedure(Sender: TObject; const URL:
String; const Browser: IWebBrowser2;
 const pDisp: IDispatch; var NewURL: OleVariant) of object;

property OnWBDocumentComplete: TIESnifferEvent;

Description
The OnWBDownloadComplete Occurs when the document being navigated to reaches
ReadyState_Complete.

Write an OnWBDocumentComplete event handler to take specific action when a frame or document
is FULLY loaded into the Web browser. For a document without frames, this event occurs once
when the document finishes loading. On a document containing multiple frames, this event occurs
once for each frame. When the multiple-frame document finishes loading, the Web browser fires the
event one final time.

Browser is the IWebBrowser2 that is loading the document.

pDisp is the Automation interface of the top-level frame or browser. When loading a document
without frames, pDisp is the interface of the Web browser. When loading a document with multiple
frames, this is the interface of the containing frame, except for the very last time the event occurs,
when it is the interface of the Web browser.

NewURL is the URL, UNC file name, or PIDL that to which the Web browser navigated. This URL
can be different from the URL to which the browser was told to navigate. For example, the browser
may have been redirected by the target resource or by an OnWBBeforeNavigate2 event handler. In
addition, the value of URL is the canonicalized and qualified URL: for example, if an application
specified a URL of "www.appcontrols.com" in a call to the Navigate or Navigate2 method of Browser
object, the URL in the OnWBDocumentComplete event handler is "http://www.appcontrols.com/".

 If you wish to modify downloaded page — use OnWBDownloadComplete event, to be notified
when the page is refreshed by user.

See also
OnWBBeforeNavigate2, OnWBDownloadBegin, OnWBDownloadComplete and
OnWBNavigateComplete2 events.

IESniffer component 21

© 2002-2003, UtilMind Solutions®

5.4.5 OnWBDownloadBegin

Applies to
IESniffer component.

Declaration
type
 TIESnifferEvent = procedure(Sender: TObject; const URL: String; const
Browser: IWebBrowser2) of object;

property OnWBDownloadBegin: TIESnifferEvent;

Description
The OnWBDownloadBegin event occurs when the Web browser starts downloading a document.

Write an OnWBDownloadBegin event handler to take specific action after the IWebBrowser2 has
located a document and immediately before it starts downloading the document. For example, use
the OnWBDownloadBegin event to launch an animation control the represents downloading or a
progress bar that is updated by an OnWBProgressChange event handler. The control can then be
stopped in an OnWBDownloadComplete event handler.

Note
To take specific action when the Web browser looks up the resource, rather than when it begins
downloading, use the OnWBBeforeNavigate2 event. OnWBDownloadBegin occurs shortly after
OnWBBeforeNavigate2.

See also
OnWBBeforeNavigate2, OnWBDocumentComplete, OnWBDownloadComplete,
OnWBNavigateComplete2 and OnWBProgressChange events.

5.4.6 OnWBDownloadComplete

Applies to
IESniffer component.

Declaration
type
 TIESnifferEvent = procedure(Sender: TObject; const URL: String; const
Browser: IWebBrowser2) of object;

property OnWBDownloadComplete: TIESnifferEvent;

Description
The OnWBDownloadComplete event occurs when a navigation operation finishes, is halted, or fails.

Write an OnWBDownloadComplete event handler to take specific action after the Web browser
stops a downloading operation. For example, use the OnWBDownloadComplete event to stop an
download indication that is started in an OnWBDownloadBegin event handler.

 You can use this event to read or modify the content of downloaded Web page, or just highlight
some keywords on the page.

Note
Unlike the OnWBNavigateComplete2 event, OnWBDownloadComplete occurs even if the Web
browser does not successfully navigate to an URL.

IESniffer component22

© 2002-2003, UtilMind Solutions®

Example 1 (demonstrates how to read all content of downloaded HTML page)
uses MSHTML; // introduces IHTMLDocument2 interface

procedure TForm1.IESniffer1WBDownloadComplete(Sender: TObject;
 const URL: String; const Browser: IWebBrowser2);
var
 doc: IHTMLDocument2;
 Collection: IHTMLElementCollection;
 Element: IHTMLElement;
 HTMLPage: String;
 PlainText: String;
begin
 try
 doc := (Browser.Document as IHTMLDocument2);
 Collection := doc.all;
 Collection := Collection.Tags('BODY') as IHTMLElementCollection;
 Element := Collection.Item(NULL, 0) as IHTMLElement;

 HTMLPage := Element.OuterHTML; // read the HTML page
 PlainText := Element.OuterText; // or just plain text
 except
 end;
end;

Example 2 (demonstrates how to highlight some text keywords in the downloaded page)

(Alternatively you can use MarkText or ReplaceText methods!)
uses MSHTML; // introduces IHTMLDocument2 interface

procedure TForm1.IESniffer1WBDownloadComplete(Sender: TObject;
 const URL: String; const Browser: IWebBrowser2);
var
 Doc: IHTMLDocument2;
 BodyElement: IHTMLBodyElement;
 TextRange: IHTMLTxtRange;
 SearchFlag: Integer;
begin
 try
 //
http://msdn.microsoft.com/library/default.asp?url=/workshop/author/dhtml
/reference/methods/findtext.asp
 SearchFlag := 2 + 4; // 2 = Whole words only, 4 = Match case

 Doc := Browser.Document as IHTMLDocument2;
 BodyElement := Doc.body as IHTMLBodyElement;
 TextRange := BodyElement.CreateTextRange;
 try
 while TextRange.findText('Delphi', MaxInt, SearchFlag) do
 TextRange.pasteHTML('Delphi Rules!');
 finally
 TextRange._Release;
 end;
 except
 end;
end;

See also
OnWBDocumentComplete, OnWBDownloadBegin and OnWBNavigateComplete2 events;

IESniffer component 23

© 2002-2003, UtilMind Solutions®

MarkText and ReplaceText methods.

5.4.7 OnWBFileDownload

Applies to
IESniffer component.

Declaration
type
 TIEWebBrowserOnFileDownload = procedure(Sender: TObject;
 const Browser: IWebBrowser2; var Cancel: WordBool) of object;

property OnWBFileDownload: TIEWebBrowserOnFileDownload;

Description
The OnWBFileDownload event occurs before displaying the FileDownload dialog box. You can
cancel downloading setting the Cancel parameter to False.

This event is useful if you would like to implement your own download manager, without built-in IE
download dialogs. To hook the location of the file which is about to be downloaded — write
OnWBBeforeNavigate2 event handler.

 This event supported by IE5.5+ only! In lower versions please use OnWBBeforeNavigate2 event
and check whether the location have *.zip, *.exe or some another extension supported by your
download manager and set Cancel parameter to False.

See also
OnWBBeforeNavigate2 event.

5.4.8 OnWBFullScreen

Applies to
IESniffer component.

Declaration
type
 TIEWebBrowserOnFullScreen = procedure(Sender: TObject; const URL:
String; const Browser: IWebBrowser2;
 FullScreen: WordBool) of object;

property OnWBFullScreen: TIEWebBrowserOnFullScreen;

Description
The OnWBFullScreen event occurs when the Internet Explorer become maximized to full screen or
restored from maximized state.

See also
OnWBVisible, OnWBToolBar, OnWBStatusBar, OnWBMenuBar and OnWBTheaterMode events.

5.4.9 OnWBMenuBar

Applies to
IESniffer component.

Declaration
type

IESniffer component24

© 2002-2003, UtilMind Solutions®

 TIEWebBrowserOnMenuBar = procedure(Sender: TObject; const URL: String;
const Browser: IWebBrowser2;
 MenuBar: WordBool) of object;

property OnWBMenuBar: TIEWebBrowserOnMenuBar;

Description
The OnWBMenuBar event occurs when the Internet Explorer shows or hides its menu bar.

See also
OnWBVisible, OnWBToolBar, OnWBStatusBar, OnWBTheaterMode and OnWBFullScreen
events.

5.4.10 OnWBNavigateComplete2

Applies to
IESniffer component.

Declaration
type
 TIEWebBrowserNavigateComplete2 = procedure(Sender: TObject; const URL:
String; const Browser: IWebBrowser2;
 const pDisp: IDispatch; var NewURL: OleVariant) of object;

property OnWBNavigateComplete2: TIEWebBrowserNavigateComplete2;

Description
The OnWBNavigateComplete2 event occurs immediately after the Web browser successfully
navigates to a new location.

Write an OnWBNavigateComplete2 event handler to take specific action when the Web browser
successfully navigates to a new resource. The event can occur before the document is fully
downloaded, but when it occurs at least part of the document must be received and a viewer for the
document created.

Browser is the IWebBrowser2 interface that navigated to the new resource.

pDisp is the Automation interface of the browser.

URL is the URL, UNC file name, or PIDL that to which the Web browser navigated. This URL can
be different from the URL to which the browser was told to navigate. For example, the browser may
have been redirected by the target resource or by an OnWBBeforeNavigate2 event handler. In
addition, the value of URL is the canonicalized and qualified URL: for example, if an application
specified a URL of "www.appcontrols.com" in a call to the Navigate or Navigate2 method of the
IWebBrowser2 interface, the URL in the OnWBDocumentComplete event handler is
"http://www.appcontrols.com/".

Note
Unlike the OnWBDownloadComplete event, OnWBNavigateComplete2 does not occur if the
operation is not successful.

 The OnURLChange event will occur if the URL in the browser address line has been changed.

See also
OnWBBeforeNavigate2, OnWBDocumentComplete, OnWBDownloadBegin and
OnWBDownloadComplete events.

IESniffer component 25

© 2002-2003, UtilMind Solutions®

5.4.11 OnWBNewWindow2

Applies to
IESniffer component.

Declaration
type
 TIEWebBrowserNewWindow2 = procedure(Sender: TObject; const URL:
String; const Browser: IWebBrowser2;
 var ppDisp: IDispatch; var Cancel: WordBool) of object;

property OnWBNewWindow2: TIEWebBrowserNewWindow2;

Description
The OnWBNewWindow2 event occurs when a new, hidden, non-navigated Web browser window is
needed.

Write an OnWBNewWindow2 to take specific action immediately before the Web browser creates a
new window for displaying a resource. This window may be needed because the user shift-clicked
on a link, the user right-clicked on a link and chose "open in new window", the frame for the target
URL does not yet exist, or the Navigate or Navigate2 methods of IWebBrowser2 interface requested
that the target document appear in a new window.

Browser is the IWebBrowser2 interface that needs a new window to display its target resource.

ppDisp optionally returns the interface for a newly created, hidden, TWebBrowser component that
can act as the new window. The Web browser configures this component and navigates to the
target URL, starting with an OnWBBeforeNavigate2 event. If the event handler does not create a
component and return its interface as the ppDisp parameter, the Web browser generates a top-level
window as a separate, nonhosted process.

Cancel allows the event handler to block the creation of a new window. When the event handler
sets Cancel to True, the Web browser tries to display the target resource in its current window,
starting with an OnWBBeforeNavigate2 event.

Note
The event handler should not return a value for ppDisp when setting Cancel to True.

See also
OnWBBeforeNavigate2 event.

5.4.12 OnWBProgressChange

Applies to
IESniffer component.

Declaration
type
 TIEWebBrowserProgressChange = procedure(Sender: TObject; const URL:
String; const Browser: IWebBrowser2;
 Progress, ProgressMax: Integer) of object;

property OnWBProgressChange: TIEWebBrowserProgressChange

Description
The OnWBProgressChange event occurs when the progress of a download operation is updated.

IESniffer component26

© 2002-2003, UtilMind Solutions®

Write an OnWBProgressChange event handler to provide visual feedback about the download
process. For example, an OnWBProgressChange event handler can update a TProgressBar
component or display the number of bytes downloaded so far.

Browser is the IWebBrowser2 interface that is in the process of downloading a document.

Progress indicates how much of the document has already been downloaded, on a scale of 0 to
ProgressMax. When Progress is –1, the operation is finished.

ProgressMax indicates the total size of the download operation.

 To calculate the percentage of progress to show in a progress indicator (when Progress is not
–1), multiply the value of Progress by 100 and divide by the value of ProgressMax.

See also
OnWBDocumentComplete, OnWBDownloadBegin and OnWBDownloadComplete events.

5.4.13 OnWBPropertyChange

Applies to
IESniffer component.

Declaration
type
 TIEWebBrowserPropertyChange = procedure(Sender: TObject; const URL:
String; const Browser: IWebBrowser2;
 const szProperty: WideString) of object;

property OnWBPropertyChange: TIEWebBrowserPropertyChange;

Description
The OnWBPropertyChange event occurs with Internet Explorer when a property is modified using
the PutProperty method.

See also
OnWBCommandStateChange and OnWBProgressChange events.

5.4.14 OnWBQuit

Applies to
IESniffer component.

Declaration
type
 TIESnifferEvent = procedure(Sender: TObject; const URL: String; const
Browser: IWebBrowser2) of object;

property OnWBQuit: TIESnifferEvent;

Description
The OnWBQuit event occurs when the Internet Explorer is about to shut down (when user close the
window or the window closed automatically by some script).

Write the OnWBQuit event handler to be notified when the Internet Explorer window is about to be
closed. After receiving OnWBQuit event you can not use Browser anymore since its handle will be
destroyed after this event. The instance of this Browser object already removed from internal list of

IESniffer component 27

© 2002-2003, UtilMind Solutions®

IESniffer component.

See also
OnWindowUnload and OnWindowLoad events.

5.4.15 OnWBStatusBar

Applies to
IESniffer component.

Declaration
type
 TIEWebBrowserOnStatusBar = procedure(Sender: TObject; const URL:
String; const Browser: IWebBrowser2;
 StatusBar: WordBool) of object;

property OnWBStatusBar: TIEWebBrowserOnStatusBar;

Description
The OnWBStatusBar event occurs when the Internet Explorer shows or hides its status bar.

See also
OnWBVisible, OnWBToolBar, OnWBMenuBar, OnWBTheaterMode and OnWBFullScreen events.

5.4.16 OnWBStatusTextChange

Applies to
IESniffer component.

Declaration
type
 TIEWebBrowserStatusTextChange = procedure(Sender: TObject; const URL:
String; const Browser: IWebBrowser2;
 var Text: WideString) of object;

property OnWBStatusTextChange: TIEWebBrowserStatusTextChange;

Description
The OnStatusTextChange occurs when the text displayed in the Internet Explorer's status bar
changes.

Browser is the IWebBrowser2 interface that needs a new window to display its target resource.

Text is the text which currently displayed in the status line of Browser. You can change this value
and update the text visible in IE status bar.

Example
procedure TForm1.IESniffer1WBStatusTextChange(Sender: TObject;
 const URL: String; const Browser: IWebBrowser2; const Text:
WideString);
begin
 StatusLabel.Caption := Text;
end;

See also
OnWBTitleChange event.

IESniffer component28

© 2002-2003, UtilMind Solutions®

5.4.17 OnWBTheaterMode

Applies to
IESniffer component.

Declaration
type
 TIEWebBrowserOnTheaterMode = procedure(Sender: TObject; const URL:
String; const Browser: IWebBrowser2; TheaterMode: WordBool) of object;

property OnWBFullScreen: TIEWebBrowserOnFullScreen;

Description
The OnWBTheaterMode event occurs when the Internet Explorer changes into or out of theater
mode.

See also
OnWBVisible, OnWBToolBar, OnWBStatusBar, OnWBMenuBar and OnWBFullScreen events.

5.4.18 OnWBTitleChange

Applies to
IESniffer component.

Declaration
type
 TIEWebBrowserTextChange = procedure(Sender: TObject; const URL:
String; const Browser: IWebBrowser2;
 const Text: WideString) of object;

property OnWBTitleChange: TIEWebBrowserTextChange;

Description
The OnWBTitleChange event occurs when the title of a document in the IWebBrowser2 interface
becomes available or changes.

Write an OnWBTitleChange event handler to respond when the Web browser obtains information
about the document title. Because the title can change while an HTML page is downloading,
LocationName is originally set to the URL of the document. After the title specified in the HTML
page, if any, becomes available, LocationName is changed to reflect the actual title.

The Browser parameter is the IWebBrowser2 interface that is unloading a document.

Text is the newly-available title of the document.

See also
OnWBStatusTextChange event.

5.4.19 OnWBToolbar

Applies to
IESniffer component.

Declaration
type
 TIEWebBrowserOnToolBar = procedure(Sender: TObject; const URL: String;

IESniffer component 29

© 2002-2003, UtilMind Solutions®

const Browser: IWebBrowser2;
 ToolBar: WordBool) of object;

property OnWBToolBar: TIEWebBrowserOnToolBar;

Description
The OnWBToolBar event occurs when the Internet Explorer changes which tool bars are visible.

See also
OnWBVisible, OnWBStatusBar, OnWBMenuBar, OnWBTheaterMode and OnWBFullScreen
events.

5.4.20 OnWBVisible

Applies to
IESniffer component.

Declaration
type
 TIEWebBrowserOnVisible = procedure(Sender: TObject; const URL: String;
const Browser: IWebBrowser2;
 Visible: WordBool) of object;

property OnWBVisible: TIEWebBrowserOnVisible;

Description
The OnWBVisible event occurs when the Web browser window is about to be shown or hidden.

Write an OnWBVisible event handler to make adjustments to compensate for the appearance or
disappearance of the Web browser window.

The Browser parameter is the Web browser (IWebBrowser2 interface) whose Visible property is
changing.

Visible is True if the Web browser is about to appear, False if the Web browser is about to be
hidden.

See also
OnWBToolBar, OnWBStatusBar, OnWBMenuBar, OnWBTheaterMode and OnWBFullScreen
events.

5.4.21 OnWindowLoad

Applies to
IESniffer component.

Declaration
type
 TWindowLoadState = (lsExistsLoading, lsExistsCompleted, lsLoading,
lsCompleted);

 TIESnifferLoadEvent = procedure(Sender: TObject; const URL: String;
const Browser: IWebBrowser2;
 State: TWindowLoadState) of object;

property OnWindowLoad: TIESnifferLoadEvent;

IESniffer component30

© 2002-2003, UtilMind Solutions®

Description
The OnWindowLoad event occurs when the component detects new Internet Explorer window.

The URL parameter is the text sniffed from the address line, Browser is the pointer to the
TWebBrowser2 interface, detected by component. You can use the properties and methods of
Browser right in this event handler.

The State parameter determines whether the Internet Explorer window was already exists when your
application started and whether the content of the Web page are completely loaded. There is 4
possible values for this parameter:

 Value Meaning

 lsExistsLoading the IE window was already running before your application started. Its content

was not completely loaded (still downloading);

 lsExistsCompleted the IE window was already running before your application started and all its
content was completely loaded (so you can change);

 lsLoading this is new IE window detected by program. The Web page still loading;

 lsCompleted this is new IE window, and the Web page already completed (even ready to

be modified!, see OnWBDownloadComplete event for more details and
sample code which shows how to dynamically modify the Web page content);

 If SniffWithHTTPPrefixOnly property is True, the component will detect only that windows which
already have "http" prefix in the address line (shows content received by HTTP or HTTPS protocols).
Otherwise, if SniffWithHTTPPrefixOnly is False, the component can detect windows with any text in
the address line, even if it's "about:blank" or path to some local directory in Windows Explorer.

 The OnWBDownloadComplete event will be triggered if the Explorer window was detected with
IsCompleted status (if the window was not existeted on application startup but the content was
already completed upon detecting the IE instance).

 The OnURLChange event will occur at once after detecting of new IE window.

Example (demonstrates how to replace the text if the page already completed, but you can do the
same in OnWBDownloadComplete event handler)
procedure TForm1.IESniffer1WindowLoad(Sender: TObject; const URL:
String;
 const Browser: IWebBrowser2; State: TacWindowLoadState);
const
 StateStr: Array[TacWindowLoadState] of String = ('Exists Loading',
'Exists Completed',
 'New Loading', 'New
Completed');
begin
 Label1.Caption := StateStr[State];
 if (State = lsExistsCompleted) or (State = lsCompleted) then
 IESniffer.ReplaceText(Browser, 'Delphi', 'Delphi Rules!');
end;

See also
SniffWithHTTPPrefixOnly property;
OnWindowUnload, OnWBDownloadComplete and OnURLChange events.

IESniffer component 31

© 2002-2003, UtilMind Solutions®

5.4.22 OnWindowUnload

Applies to
IESniffer component.

Declaration
type
 TIESnifferUnloadEvent = procedure(Sender: TObject; const URL: String)
of object;

property OnWindowUnload: TIESnifferUnloadEvent;

Description
The OnWindowUnload event notifies that the Explorer window was closed (disappears from screen),
process has been terminated and all its handles was destroyed, so you can not use its
IWebBrowser2 interface anymore.

However, you should stop using that browser instance once it only was about to be destroyed, after
receiving OnWBQuit event.

See also
OnWindowLoad and OnWBQuit events.

6 IESnifferAutoFillUserInfo component

6.1 TIESnifferAutoFillUserInfo

Overview
The IESnifferAutoFillUserInfo is the "plug-in" for IESniffer component which allows to automatically
fill the Web forms with specified information, when it connected to the FormAutoFill property of
IESniffer.

How does it works?
When the this component is connected to IESniffer, it hooks the DownloadComplete event of each
browser (listed in the internal list of IESniffer). When it detects the DownloadComplete event (it
occurs when the Web page is completely downloaded), the IESnifferAutoFillUserInfo are looking in
the Web forms for the input fields which can be automatically filled with information provided in
Fields structure.

To find the input boxes which could be filled, the component uses so-called FillTokens. When the
component find on the Web page some input box, it checks whether its name attribute (in the
HTML tag) and the text prior to that input box. If the text nearby contains one of the words described
in "Possible" property AND do NOT have the words described in "Wrong" property, OR contains
one of the word specified in "Super" property, OR the field name is the one of the word specified in
"ExactNameField", then the input field can be automatically marked, or filled with the proper text,
taken from Fields structure.

new! To specify custom fields/tokens for filling of the web forms — specify them to the
CustomFields property (collection of the custom fields/tokens).

How to use?
If you want to automatically fill that fields with provided information — set AutoFill property to True.
In case if you just want to "highlight" that fields which possibly could be filled — set AutoHighlight
property to True, and specify the background color for the marked input boxes to HighlightColor

IESniffer component32

© 2002-2003, UtilMind Solutions®

property.

To fill the form fields programmatically (for example, when user clicks some button, not on each
DownloadComplete event) — call the Fill method.

See also
IESniffer component.

6.2 Properties

6.2.1 AutoFill

Applies to
IESnifferAutoFillUserInfo component.

Declaration
property AutoFill: Boolean;

Description
The AutoFill property controls whether the Web forms should be automatically filled with information
specified in Fields structure, when the IE browser generates the DownloadComplete event.

See also
AutoHighlight and Fields properties;
Fill method.

6.2.2 AutoHighlight

Applies to
IESnifferAutoFillUserInfo component.

Declaration
property AutoHighlight: Boolean;

Description
The AutoFill property controls whether the Web forms which could be automatically filled should be
"highlighted" (with colors specified in HighlightColor and HighlightTextColor properties), when the IE
browser generates the DownloadComplete event.

 The empty fields, where the text is not specified, will NOT be highlighted.

See also
AutoFill and Fields properties;
Fill method.

6.2.3 CustomFields

Applies to
IESnifferAutoFillUserInfo component.

Declaration
type
 TIESnifferAutoFillCustomFieldType = (ftAny, ftEditBox, ftComboBox);
 TIESnifferAutoFillCustomField = class
 published
 property FieldType: TIESnifferAutoFillCustomFieldType default ftAny;

IESnifferAutoFillUserInfo component 33

© 2002-2003, UtilMind Solutions®

 property Name: String;
 property Value: String;
 property Tokens: TIESnifferAutoFillTokens;
 end;

property CustomFields: TIESnifferAutoFillCustomFields;

Description
The CustomFields property is the collection of the custom fields/tokens. Each item of this collection
respresents 4 tokens of the field on the Web forms and the Value, which should be specified to that
field on filling.

To add custom fields at design-time — click on the property name and add the custom fields in
special designer.

See also
Fields and FillTokens properties;
Fill method.

6.2.4 Fields

Applies to
IESnifferAutoFillUserInfo component.

Declaration
type
 TIESnifferAutoFillUserFields = class(TPersistent)
 published
 property FullName: String;
 property Company: String;
 property JobTitle: String;
 property Email: String;
 property Phone: String;
 property Fax: String;
 property TaxIDNumber: String;

 property AddressLine1: String;
 property AddressLine2: String;
 property City: String;
 property State: String;
 property ZipCode: String;
 property Country: String;
 end;

property Fields: TIESnifferAutoFillUserFields;

Description
The Fields structure used to specify the user details information: full name, email, phone, fax and
full address information. This information can be automatically put by the component to Web forms
if AutoFill property is True, or after calling the Fill method.

 The component don't highlight and don't fill that fields where the text is empty.

 To specify custom fields, i.e, bank account information, social security number, or something else
— use CustomFields property.

IESniffer component34

© 2002-2003, UtilMind Solutions®

See also
AutoFill, AutoHighlight, CustomFields, FillTokens and RegistrySaver properties;
Fill method.

6.2.5 FillTokens

Applies to
IESnifferAutoFillUserInfo component.

Declaration
type
 TIESnifferAutoFillTokens = class(TPersistent)
 published
 property Super: String;
 property ExactNameField: String;
 property Possible: String;
 property Wrong: String;
 end;

 TIESnifferAutoFillUserTokens = class(TPersistent)
 published
 property FullName: TIESnifferAutoFillTokens;
 property FirstName: TIESnifferAutoFillTokens;
 property LastName: TIESnifferAutoFillTokens;
 property Company: TIESnifferAutoFillTokens;
 property JobTitle: TIESnifferAutoFillTokens;
 property Email: TIESnifferAutoFillTokens;
 property Phone: TIESnifferAutoFillTokens;
 property Fax: TIESnifferAutoFillTokens;
 property TaxIDNumber: TIESnifferAutoFillTokens;
 property AddressLine1: TIESnifferAutoFillTokens;
 property AddressLine2: TIESnifferAutoFillTokens;
 property City: TIESnifferAutoFillTokens;
 property State: TIESnifferAutoFillTokens;
 property ZipCode: TIESnifferAutoFillTokens;
 property Country: TIESnifferAutoFillTokens;
 end;

property FillTokens: TIESnifferAutoFillUserTokens;

Description
The FillTokens structure can be used to specify custom "tokens" of the fields which can be
automatically filled with values in Fields structure.

When the component find on the Web page some input box, it checks whether its name attribute
(in HTML tag) and the text prior to that input box. If the text nearby contains one of the words
described in "Possible" property AND do NOT have the words described in "Wrong" property, OR
contains one of the word specified in "Super" property, OR the field name is the one of the word
specified in "ExactNameField", then the input field can be automatically marked, or filled with the
proper text, taken from Fields structure.

 To specify custom fields/tokens, i.e, bank account information, social security number, or
something else — use CustomFields property.

See also
AutoFill, AutoHighlight, Fields and CustomFields properties;

IESnifferAutoFillUserInfo component 35

© 2002-2003, UtilMind Solutions®

Fill method.

6.2.6 HighlightColor

Applies to
IESnifferAutoFillUserInfo component.

Declaration
property HighlightColor: TColor; // $00A0FFFF by default

Description
The HighlightColor property specifies the background color for the fields on the Web forms, which
could be automatically filled with text specified in Fields structure.

If you specifying too dark background color, then specify lighter text color in HighlightTextColor
property.

See also
AutoHighlight, HighlightTextColor and Fields properties;
Fill method.

6.2.7 HighlightTextColor

Applies to
IESnifferAutoFillUserInfo component.

Declaration
property HighlightTextColor: TColor; // black by default

Description
The HighlightTextColor property specifies the text color for the fields on the Web forms, which could
be automatically filled with text specified in Fields structure.

To specify the background color for fields which could be filled — use HighlightColor property.

See also
AutoHighlight, HighlightColor and Fields properties;
Fill method.

6.2.8 RegistrySaver

Applies to
IESnifferAutoFillUserInfo component.

Declaration
type
 TRegLocation = (rlCurrentUser, rlLocalMachine);
 TIESnifferAutoFillRegistrySaver = class
 published
 property Enabled: Boolean;
 property RegKey: String;
 property RegLocation: TRegLocation;
 end;

property RegistrySaver: TIESnifferAutoFillRegistrySaver;

Description

IESniffer component36

© 2002-2003, UtilMind Solutions®

The RegistrySaver structure used to automatically save and retreive the values for Fields structure
from registry.

To let the component automatically retreive the Fields from registry on program startup — set
Enabled property to True. To specify the registy key and location where the text should be stored —
specify RegKey and RegLocation properties.

 To save the Fields to registry after their modification — call Save method.

See also
Fields property;
Save method.

6.3 Methods

6.3.1 Fill

Applies to
IESnifferAutoFillUserInfo component.

Declaration
procedure Fill(const Browser: IWebBrowser2; BackgroundColor: TColor =
clNone; TextColor: TColor = clNone;
 HighlightOnly: Boolean = False; ScanFrames: Boolean = True); overload;

procedure Fill(const Document: IHTMLDocument2; BackgroundColor: TColor =
clNone; TextColor: TColor = clNone;
 HighlightOnly: Boolean = False; ScanFrames: Boolean = True); overload;

Description
The Fill method used to mark or fill the fields of the Web forms with text specified in Fields structure.

Browser (or Document) parameter points to the interface which holds the web page.

BackgroundColor and TextColor is the optional parameters used to specify custom background and
text colors for marked form fields.

HighlightOnly parameter can be set to True, if you just want to highlight fields which could be filled,
without filling them.

ScanFrames is also optional parameter, which specifies whether the method should scan all frames
inside the specified Browser interface or Document.

Example
procedure TIEBandForm.AutoFillBtnClick(Sender: TObject);
begin
 IESnifferAutoFillUserInfo1.Fill(FBrowser);
end;

See also
AutoFill, AutoHighlight, HighlightColor, HighlightTextColor and Fields properties;
IESniffer component.

IESnifferAutoFillUserInfo component 37

© 2002-2003, UtilMind Solutions®

6.3.2 Save

Applies to
IESnifferAutoFillUserInfo component.

Declaration
procedure Save;

Description
The Save method saves the values of Fields structure to the registry (or INI-file), to the registry keys
specified in RegistrySaver structure.

Example
procedure TAutoFillFrm.ButtonsPanel1ApplySettings(Sender: TObject);
begin
 with IESnifferAutoFillUserInfo1, Fields do
 begin
 FullName := EName.Text;
 Email := EEMail.Text;
 Company := ECompany.Text;
 JobTitle := EJobTitle.Text;
 Phone := EPhone.Text;
 Fax := EFax.Text;

 AddressLine1 := ELine1.Text;
 AddressLine2 := ELine2.Text;
 City := ECity.Text;
 State := EState.Text;
 ZIPCode := EZIP.Text;
 Country := ECountry.Text;

 Save;
 end;
end;

See also
Fields and RegistrySaver structures;
IESniffer component.

Index
- I -
IESniffer 7

IESnifferAutoFillUserInfo 31

Installation Instructions 3

- L -
License Agreement 5

- R -
Registration Information 4

- T -
TIESniffer 7

Active 9

AddBrowser 13

ClearMarks 14

CloseBrowsers 15

IEList 10

MarkText 15

MonitorInterval 11

OnURLChange 17

OnWBBeforeNavigate2 18

OnWBCommandStateChange 19

OnWBDocumentChange 20

OnWBDownloadBegin 21

OnWBDownloadComplete 21

OnWBFileDownload 23

OnWBFullScreen 23

OnWBMenuBar 23

OnWBNavigateComplete2 24

OnWBNewWindow2 25

OnWBProgressChange 25

OnWBPropertyChange 26

OnWBQuit 26

OnWBStatusBar 27

OnWBStatusChange 27

OnWBTheaterMode 28

OnWBTitleChange 28

OnWBToolbar 28

OnWBVisible 29

OnWindowLoad 29

OnWindowUnload 31

Refresh 17

ReplaceText 16

SearchBar 11

SearchRedirect 12

SniffWithHTTPPrefixOnly 13

URLs 13

TIESnifferAutoFillUserInfo 31

AutoFill 32

AutoHighlight 32

CustomFields 32

Fields 33

Fill 36

FillTokens 34

HighlightColor 35

HighlightTextColor 35

RegistrySaver 35

Save 37

IESniffer component38

© 2002-2003, UtilMind Solutions®

	Components Overview
	Installation Instructions
	Registration Information
	License Agreement
	IESniffer component
	TIESniffer
	Properties
	Active
	FormAutoFill
	IEList
	MonitorInterval
	SearchBar
	SearchRedirect
	SniffWithHTTPPrefixOnly
	URLs

	Methods
	AddBrowser
	ClearMarks
	CloseBrowsers
	MarkText
	ReplaceText
	Refresh

	Events
	OnURLChange
	OnWBBeforeNavigate2
	OnWBCommandStateChange
	OnWBDocumentComplete
	OnWBDownloadBegin
	OnWBDownloadComplete
	OnWBFileDownload
	OnWBFullScreen
	OnWBMenuBar
	OnWBNavigateComplete2
	OnWBNewWindow2
	OnWBProgressChange
	OnWBPropertyChange
	OnWBQuit
	OnWBStatusBar
	OnWBStatusTextChange
	OnWBTheaterMode
	OnWBTitleChange
	OnWBToolbar
	OnWBVisible
	OnWindowLoad
	OnWindowUnload

	IESnifferAutoFillUserInfo component
	TIESnifferAutoFillUserInfo
	Properties
	AutoFill
	AutoHighlight
	CustomFields
	Fields
	FillTokens
	HighlightColor
	HighlightTextColor
	RegistrySaver

	Methods
	Fill
	Save

